Mahamoud Abdallah, Chevalier Jacqueline, Alibert-Franco Sandrine, Kern Winfried V, Pagès Jean-Marie
UMR-MD-1, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, 27 Boulevard Jean Moulin, F-13385 Marseille Cedex 05, France.
J Antimicrob Chemother. 2007 Jun;59(6):1223-9. doi: 10.1093/jac/dkl493. Epub 2007 Jan 17.
After several decades of continuously successful antibiotic therapy against bacterial infections, we are now facing a worrying prospect: the accelerated evolution of antibiotic resistance to important human pathogens and the scarcity of new anti-infective drug families under development. Efflux is a general mechanism responsible for bacterial resistance to antibiotics. This active drug transport is involved in low intrinsic susceptibility, cross-resistance to chemically unrelated classes of molecules, and selection/acquisition of additional mechanisms of resistance. Thus, inhibition of bacterial efflux mechanisms appears to be a promising target in order to (i) increase the intracellular concentration of antibiotics that are expelled by efflux pumps, (ii) restore the drug susceptibility of resistant clinical strains, and (iii) reduce the capability for acquired additional resistance. Structurally unrelated classes of efflux pump inhibitors (EPIs) have been described and tested in the last decade, including some analogues of antibiotic substrates and new chemical molecules. Among the current collection of EPIs, only a few compounds have been studied taking into account the structure-activity relationships and the spectrum of activity in terms of antibiotics, pumps and bacteria. While large efforts have characterized an increasing number of bacterial efflux pumps and generated several potentially active EPIs, they have not elucidated the molecular basis of efflux transport and inhibition. Recent studies of pump-substrate complexes, the 3D resolution of the efflux pumps, the synthesis of novel compounds and molecular dynamic studies may generate new clues to decipher and select novel targets inside the efflux mechanisms and, finally, may result in a clinically useful molecule.
在针对细菌感染的抗生素治疗持续成功数十年之后,我们如今正面临一个令人担忧的前景:对重要人类病原体的抗生素耐药性加速演变,以及正在研发的新型抗感染药物家族稀缺。外排是细菌对抗生素产生耐药性的一种普遍机制。这种主动药物转运参与了低固有敏感性、对化学上不相关分子类别的交叉耐药性以及其他耐药机制的选择/获得。因此,抑制细菌外排机制似乎是一个有前景的靶点,以便(i)提高被外排泵排出的抗生素的细胞内浓度,(ii)恢复耐药临床菌株的药物敏感性,以及(iii)降低获得额外耐药性的能力。在过去十年中,已经描述并测试了结构上不相关的外排泵抑制剂(EPI)类别,包括一些抗生素底物类似物和新的化学分子。在当前的EPI集合中,只有少数化合物在考虑抗生素、泵和细菌方面的构效关系和活性谱的情况下进行了研究。虽然大量努力已经表征了越来越多的细菌外排泵并产生了几种潜在活性的EPI,但它们尚未阐明外排转运和抑制的分子基础。最近对泵 - 底物复合物的研究、外排泵的三维解析、新型化合物的合成以及分子动力学研究可能会产生新的线索,以破译和选择外排机制内的新靶点,并最终可能产生一种临床有用的分子。