Suppr超能文献

在关系识别问题中对先验信息进行结构化整合。

Structured incorporation of prior information in relationship identification problems.

作者信息

Sheehan N A, Egeland T

机构信息

Department of Health Sciences, University of Leicester, University Road, Leicester LE1 7RH, UK.

出版信息

Ann Hum Genet. 2007 Jul;71(Pt 4):501-18. doi: 10.1111/j.1469-1809.2006.00345.x. Epub 2007 Jan 18.

Abstract

The objective of this paper is to show how various sources of information can be modelled and integrated to address relationship identification problems. Applications come from areas as diverse as evolution and conservation research, genealogical research in human, plant and animal populations, and forensic problems including paternity cases, identification following disasters, family reunions and immigration issues. We propose assigning a prior probability distribution to the sample space of pedigrees, calculating the likelihood based on DNA data using available software and posterior probabilities using Bayes' Theorem. Our emphasis here is on the modelling of this prior information in a formal and consistent manner. We introduce the distinction between local and global prior information, whereby local information usually applies to particular components of the pedigree and global prior information refers to more general features. When it is difficult to decide on a prior distribution, robustness to various choices should be studied. When suitable prior information is not available, a flat prior can be used which will then correspond to a strict likelihood approach. In practice, prior information is often considered for these problems, but in a generally ad hoc manner. This paper offers a consistent alternative. We emphasise that many practical problems can be addressed using freely available software.

摘要

本文的目的是展示如何对各种信息源进行建模和整合,以解决关系识别问题。应用领域涵盖进化与保护研究、人类、植物和动物种群的谱系研究,以及法医问题,包括亲子鉴定、灾难后的身份识别、家庭团聚和移民问题。我们建议为谱系的样本空间分配一个先验概率分布,使用可用软件根据DNA数据计算似然性,并使用贝叶斯定理计算后验概率。我们在此强调以形式化和一致的方式对该先验信息进行建模。我们引入了局部先验信息和全局先验信息之间的区别,其中局部信息通常适用于谱系的特定组成部分,而全局先验信息则指更一般的特征。当难以确定先验分布时,应研究对各种选择的稳健性。当没有合适的先验信息时,可以使用均匀先验,这将对应于严格的似然方法。在实践中,这些问题通常会考虑先验信息,但通常是以特别的方式。本文提供了一种一致的替代方法。我们强调,许多实际问题可以使用免费软件来解决。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验