Pruzinská Adriana, Anders Iwona, Aubry Sylvain, Schenk Nicole, Tapernoux-Lüthi Esther, Müller Thomas, Kräutler Bernhard, Hörtensteiner Stefan
Institute of Plant Sciences, University of Bern, CH-3013 Bern, Switzerland.
Plant Cell. 2007 Jan;19(1):369-87. doi: 10.1105/tpc.106.044404. Epub 2007 Jan 19.
A central reaction of chlorophyll breakdown, porphyrin ring opening of pheophorbide a to the primary fluorescent chlorophyll catabolite (pFCC), requires pheophorbide a oxygenase (PAO) and red chlorophyll catabolite reductase (RCCR), with red chlorophyll catabolite (RCC) as a presumably PAO-bound intermediate. In subsequent steps, pFCC is converted to different fluorescent chlorophyll catabolites (FCCs) and nonfluorescent chlorophyll catabolites (NCCs). Here, we show that RCCR-deficient Arabidopsis thaliana accumulates RCC and three RCC-like pigments during senescence, as well as FCCs and NCCs. We also show that the stereospecificity of Arabidopsis RCCR is defined by a small protein domain and can be reversed by a single Phe-to-Val exchange. Exploiting this feature, we prove the in vivo participation of RCCR in chlorophyll breakdown. After complementation of RCCR mutants with RCCRs exhibiting alternative specificities, patterns of chlorophyll catabolites followed the specificity of complementing RCCRs. Light-dependent leaf cell death observed in different RCCR-deficient lines strictly correlated with the accumulation of RCCs and the release of singlet oxygen, and PAO induction preceded lesion formation. These findings suggest that RCCR absence causes leaf cell death as a result of the accumulation of photodynamic RCC. We conclude that RCCR (together with PAO) is required for the detoxification of chlorophyll catabolites and discuss the biochemical role(s) for this enzyme.
叶绿素降解的核心反应,即脱镁叶绿酸a的卟啉环打开形成初级荧光叶绿素分解代谢产物(pFCC),需要脱镁叶绿酸a加氧酶(PAO)和红色叶绿素分解代谢产物还原酶(RCCR),红色叶绿素分解代谢产物(RCC)可能是与PAO结合的中间体。在随后的步骤中,pFCC会转化为不同的荧光叶绿素分解代谢产物(FCC)和非荧光叶绿素分解代谢产物(NCC)。在此,我们表明,缺乏RCCR的拟南芥在衰老过程中会积累RCC和三种RCC样色素,以及FCC和NCC。我们还表明,拟南芥RCCR的立体特异性由一个小的蛋白质结构域决定,并且可以通过单个苯丙氨酸到缬氨酸的交换而逆转。利用这一特性,我们证明了RCCR在体内参与叶绿素降解。用具有不同特异性的RCCR对RCCR突变体进行互补后,叶绿素分解代谢产物的模式遵循互补RCCR的特异性。在不同的RCCR缺陷型品系中观察到的光依赖性叶细胞死亡与RCC的积累和单线态氧的释放密切相关,并且PAO的诱导先于损伤形成。这些发现表明,RCCR的缺失由于光动力RCC的积累而导致叶细胞死亡。我们得出结论,RCCR(与PAO一起)是叶绿素分解代谢产物解毒所必需的,并讨论了该酶的生化作用。