Xin Huawei, Liu Dan, Wan Ma, Safari Amin, Kim Hyeung, Sun Wen, O'Connor Matthew S, Songyang Zhou
Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
Nature. 2007 Feb 1;445(7127):559-62. doi: 10.1038/nature05469. Epub 2007 Jan 21.
Telomere dysfunction may result in chromosomal abnormalities, DNA damage responses, and even cancer. Early studies in lower organisms have helped to establish the crucial role of telomerase and telomeric proteins in maintaining telomere length and protecting telomere ends. In Oxytricha nova, telomere G-overhangs are protected by the TEBP-alpha/beta heterodimer. Human telomeres contain duplex telomeric repeats with 3' single-stranded G-overhangs, and may fold into a t-loop structure that helps to shield them from being recognized as DNA breaks. Additionally, the TEBP-alpha homologue, POT1, which binds telomeric single-stranded DNA (ssDNA), associates with multiple telomeric proteins (for example, TPP1, TIN2, TRF1, TRF2 and RAP1) to form the six-protein telosome/shelterin and other subcomplexes. These telomeric protein complexes in turn interact with diverse pathways to form the telomere interactome for telomere maintenance. However, the mechanisms by which the POT1-containing telosome communicates with telomerase to regulate telomeres remain to be elucidated. Here we demonstrate that TPP1 is a putative mammalian homologue of TEBP-beta and contains a predicted amino-terminal oligonucleotide/oligosaccharide binding (OB) fold. TPP1-POT1 association enhanced POT1 affinity for telomeric ssDNA. In addition, the TPP1 OB fold, as well as POT1-TPP1 binding, seemed critical for POT1-mediated telomere-length control and telomere-end protection in human cells. Disruption of POT1-TPP1 interaction by dominant negative TPP1 expression or RNA interference (RNAi) resulted in telomere-length alteration and DNA damage responses. Furthermore, we offer evidence that TPP1 associates with the telomerase in a TPP1-OB-fold-dependent manner, providing a physical link between telomerase and the telosome/shelterin complex. Our findings highlight the critical role of TPP1 in telomere maintenance, and support a yin-yang model in which TPP1 and POT1 function as a unit to protect human telomeres, by both positively and negatively regulating telomerase access to telomere DNA.
端粒功能障碍可能导致染色体异常、DNA损伤反应,甚至引发癌症。早期对低等生物的研究有助于确立端粒酶和端粒蛋白在维持端粒长度及保护端粒末端方面的关键作用。在新大草履虫中,端粒G链悬突由TEBP-α/β异源二聚体保护。人类端粒包含具有3'单链G链悬突的双链端粒重复序列,并可能折叠成t环结构,有助于保护它们不被识别为DNA断裂。此外,与端粒单链DNA(ssDNA)结合的TEBP-α同源物POT1与多种端粒蛋白(例如TPP1、TIN2、TRF1、TRF2和RAP1)结合,形成由六种蛋白质组成的端粒体/遮蔽蛋白及其他亚复合物。这些端粒蛋白复合物进而与多种途径相互作用,形成用于维持端粒的端粒相互作用组。然而,含POT1的端粒体与端粒酶通信以调节端粒的机制仍有待阐明。在此,我们证明TPP1是TEBP-β的推定哺乳动物同源物,并含有预测的氨基末端寡核苷酸/寡糖结合(OB)折叠。TPP1-POT1结合增强了POT1对端粒ssDNA的亲和力。此外,TPPOB折叠以及POT1-TPP1结合似乎对人类细胞中POT1介导的端粒长度控制和端粒末端保护至关重要。通过显性负性TPP1表达或RNA干扰(RNAi)破坏POT1-TPP1相互作用会导致端粒长度改变和DNA损伤反应。此外,我们提供证据表明TPP1以TPP1-OB折叠依赖的方式与端粒酶结合,在端粒酶与端粒体/遮蔽蛋白复合物之间建立了物理联系。我们的研究结果突出了TPP1在端粒维持中的关键作用,并支持一种阴阳模型,即TPP1和POT1作为一个单元发挥作用,通过正负调节端粒酶对端粒DNA 的接近来保护人类端粒。