Xu Rong, Supekar Kaustubh, Huang Yang, Das Amar, Garber Alan
Biomedical Informatics Training Program, Stanford Medical Informatics, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
AMIA Annu Symp Proc. 2006;2006:824-8.
Randomized clinical trials (RCT) papers provide reliable information about efficacy of medical interventions. Current keyword based search methods to retrieve medical evidence,overload users with irrelevant information as these methods often do not take in to consideration semantics encoded within abstracts and the search query. Personalized semantic search, intelligent clinical question answering and medical evidence summarization aim to solve this information overload problem. Most of these approaches will significantly benefit if the information available in the abstracts is structured into meaningful categories (e.g., background, objective, method, result and conclusion). While many journals use structured abstract format, majority of RCT abstracts still remain unstructured.We have developed a novel automated approach to structure RCT abstracts by combining text classification and Hidden Markov Modeling(HMM) techniques. Results (precision: 0.98, recall: 0.99) of our approach significantly outperform previously reported work on automated categorization of sentences in RCT abstracts.
随机临床试验(RCT)论文提供了有关医学干预疗效的可靠信息。当前基于关键词的检索医学证据的方法,会让用户面对大量不相关信息,因为这些方法往往没有考虑摘要和检索查询中编码的语义。个性化语义检索、智能临床问题解答和医学证据总结旨在解决这种信息过载问题。如果摘要中的可用信息能被构建成有意义的类别(如背景、目的、方法、结果和结论),那么这些方法中的大多数将受益匪浅。虽然许多期刊采用结构化摘要格式,但大多数RCT摘要仍然是非结构化的。我们开发了一种新颖的自动化方法,通过结合文本分类和隐马尔可夫模型(HMM)技术来构建RCT摘要。我们方法的结果(精确率:0.98,召回率:0.99)显著优于先前报道的关于RCT摘要句子自动分类的工作。