Maalouf M, Sullivan P G, Davis L, Kim D Y, Rho J M
Neurology Research, NRC 4th Floor, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ 85013, USA.
Neuroscience. 2007 Mar 2;145(1):256-64. doi: 10.1016/j.neuroscience.2006.11.065. Epub 2007 Jan 18.
Dietary protocols that increase serum levels of ketones, such as calorie restriction and the ketogenic diet, offer robust protection against a multitude of acute and chronic neurological diseases. The underlying mechanisms, however, remain unclear. Previous studies have suggested that the ketogenic diet may reduce free radical levels in the brain. Thus, one possibility is that ketones may mediate neuroprotection through antioxidant activity. In the present study, we examined the effects of the ketones beta-hydroxybutyrate and acetoacetate on acutely dissociated rat neocortical neurons subjected to glutamate excitotoxicity using cellular electrophysiological and single-cell fluorescence imaging techniques. Further, we explored the effects of ketones on acutely isolated mitochondria exposed to high levels of calcium. A combination of beta-hydroxybutyrate and acetoacetate (1 mM each) decreased neuronal death and prevented changes in neuronal membrane properties induced by 10 microM glutamate. Ketones also significantly decreased mitochondrial production of reactive oxygen species and the associated excitotoxic changes by increasing NADH oxidation in the mitochondrial respiratory chain, but did not affect levels of the endogenous antioxidant glutathione. In conclusion, we demonstrate that ketones reduce glutamate-induced free radical formation by increasing the NAD+/NADH ratio and enhancing mitochondrial respiration in neocortical neurons. This mechanism may, in part, contribute to the neuroprotective activity of ketones by restoring normal bioenergetic function in the face of oxidative stress.
增加血清酮水平的饮食方案,如热量限制和生酮饮食,对多种急性和慢性神经疾病具有强大的保护作用。然而,其潜在机制仍不清楚。先前的研究表明,生酮饮食可能会降低大脑中的自由基水平。因此,一种可能性是酮可能通过抗氧化活性介导神经保护作用。在本研究中,我们使用细胞电生理和单细胞荧光成像技术,研究了酮β-羟基丁酸酯和乙酰乙酸对遭受谷氨酸兴奋性毒性的急性解离大鼠新皮层神经元的影响。此外,我们还探讨了酮对急性分离的暴露于高钙水平的线粒体的影响。β-羟基丁酸酯和乙酰乙酸(各1 mM)的组合减少了神经元死亡,并防止了10 microM谷氨酸诱导的神经元膜特性变化。酮还通过增加线粒体呼吸链中的NADH氧化,显著降低了线粒体活性氧的产生以及相关的兴奋性毒性变化,但不影响内源性抗氧化剂谷胱甘肽的水平。总之,我们证明酮通过增加NAD+/NADH比值和增强新皮层神经元中的线粒体呼吸来减少谷氨酸诱导的自由基形成。面对氧化应激时,这种机制可能部分有助于酮的神经保护活性,恢复正常的生物能量功能。