Suppr超能文献

酮类通过增加NADH氧化来抑制谷氨酸兴奋性毒性后线粒体活性氧的产生。

Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation.

作者信息

Maalouf M, Sullivan P G, Davis L, Kim D Y, Rho J M

机构信息

Neurology Research, NRC 4th Floor, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ 85013, USA.

出版信息

Neuroscience. 2007 Mar 2;145(1):256-64. doi: 10.1016/j.neuroscience.2006.11.065. Epub 2007 Jan 18.

Abstract

Dietary protocols that increase serum levels of ketones, such as calorie restriction and the ketogenic diet, offer robust protection against a multitude of acute and chronic neurological diseases. The underlying mechanisms, however, remain unclear. Previous studies have suggested that the ketogenic diet may reduce free radical levels in the brain. Thus, one possibility is that ketones may mediate neuroprotection through antioxidant activity. In the present study, we examined the effects of the ketones beta-hydroxybutyrate and acetoacetate on acutely dissociated rat neocortical neurons subjected to glutamate excitotoxicity using cellular electrophysiological and single-cell fluorescence imaging techniques. Further, we explored the effects of ketones on acutely isolated mitochondria exposed to high levels of calcium. A combination of beta-hydroxybutyrate and acetoacetate (1 mM each) decreased neuronal death and prevented changes in neuronal membrane properties induced by 10 microM glutamate. Ketones also significantly decreased mitochondrial production of reactive oxygen species and the associated excitotoxic changes by increasing NADH oxidation in the mitochondrial respiratory chain, but did not affect levels of the endogenous antioxidant glutathione. In conclusion, we demonstrate that ketones reduce glutamate-induced free radical formation by increasing the NAD+/NADH ratio and enhancing mitochondrial respiration in neocortical neurons. This mechanism may, in part, contribute to the neuroprotective activity of ketones by restoring normal bioenergetic function in the face of oxidative stress.

摘要

增加血清酮水平的饮食方案,如热量限制和生酮饮食,对多种急性和慢性神经疾病具有强大的保护作用。然而,其潜在机制仍不清楚。先前的研究表明,生酮饮食可能会降低大脑中的自由基水平。因此,一种可能性是酮可能通过抗氧化活性介导神经保护作用。在本研究中,我们使用细胞电生理和单细胞荧光成像技术,研究了酮β-羟基丁酸酯和乙酰乙酸对遭受谷氨酸兴奋性毒性的急性解离大鼠新皮层神经元的影响。此外,我们还探讨了酮对急性分离的暴露于高钙水平的线粒体的影响。β-羟基丁酸酯和乙酰乙酸(各1 mM)的组合减少了神经元死亡,并防止了10 microM谷氨酸诱导的神经元膜特性变化。酮还通过增加线粒体呼吸链中的NADH氧化,显著降低了线粒体活性氧的产生以及相关的兴奋性毒性变化,但不影响内源性抗氧化剂谷胱甘肽的水平。总之,我们证明酮通过增加NAD+/NADH比值和增强新皮层神经元中的线粒体呼吸来减少谷氨酸诱导的自由基形成。面对氧化应激时,这种机制可能部分有助于酮的神经保护活性,恢复正常的生物能量功能。

相似文献

1
Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation.
Neuroscience. 2007 Mar 2;145(1):256-64. doi: 10.1016/j.neuroscience.2006.11.065. Epub 2007 Jan 18.
2
Ketone bodies are protective against oxidative stress in neocortical neurons.
J Neurochem. 2007 Jun;101(5):1316-26. doi: 10.1111/j.1471-4159.2007.04483.x. Epub 2007 Mar 30.
4
Glutamate excitotoxicity and Ca2+-regulation of respiration: Role of the Ca2+ activated mitochondrial transporters (CaMCs).
Biochim Biophys Acta. 2016 Aug;1857(8):1158-1166. doi: 10.1016/j.bbabio.2016.04.003. Epub 2016 Apr 7.
5
Cellular and mitochondrial changes in glutamate-induced HT4 neuronal cell death.
Neuroscience. 2000;97(3):531-41. doi: 10.1016/s0306-4522(00)00028-2.
6
Mangifera indica L. extract attenuates glutamate-induced neurotoxicity on rat cortical neurons.
Neurotoxicology. 2009 Nov;30(6):1053-8. doi: 10.1016/j.neuro.2009.06.012. Epub 2009 Jul 8.
7
Glutamate-induced differential mitochondrial response in young and adult rats.
Neurochem Int. 2004 Apr;44(5):361-9. doi: 10.1016/s0197-0186(03)00164-5.
8
Uric acid protects neurons against excitotoxic and metabolic insults in cell culture, and against focal ischemic brain injury in vivo.
J Neurosci Res. 1998 Sep 1;53(5):613-25. doi: 10.1002/(SICI)1097-4547(19980901)53:5<613::AID-JNR11>3.0.CO;2-1.
10
Secretory PLA2-IIA and ROS generation in peripheral mitochondria are critical for neuronal death.
Brain Res. 2007 Jun 11;1153:43-51. doi: 10.1016/j.brainres.2007.03.067. Epub 2007 Mar 28.

引用本文的文献

3
Unraveling the interplay between sleep, redox metabolism, and aging: implications for brain health and longevity.
Front Aging. 2025 May 21;6:1605070. doi: 10.3389/fragi.2025.1605070. eCollection 2025.
4
Modulation of pain by ketones: a mini-review.
Am J Physiol Cell Physiol. 2025 Jul 1;329(1):C31-C37. doi: 10.1152/ajpcell.00305.2025. Epub 2025 May 28.
6
Role of inflammasomes in acute respiratory distress syndrome.
Thorax. 2025 Mar 18;80(4):255-263. doi: 10.1136/thorax-2024-222596.
8
Ketosis regulates K ion channels, strengthening brain-wide signaling disrupted by age.
Imaging Neurosci (Camb). 2024;2. doi: 10.1162/imag_a_00163. Epub 2024 May 8.
9
Ketogenic Diet: A Review of Composition Diversity, Mechanism of Action and Clinical Application.
J Nutr Metab. 2024 Oct 18;2024:6666171. doi: 10.1155/2024/6666171. eCollection 2024.
10
The Evidence for Diet as a Treatment in Migraine-A Review.
Nutrients. 2024 Oct 9;16(19):3415. doi: 10.3390/nu16193415.

本文引用的文献

1
Caloric restriction in C57BL/6J mice mimics therapeutic fasting in humans.
Lipids Health Dis. 2006 May 18;5:13. doi: 10.1186/1476-511X-5-13.
3
Acetoacetate protects neuronal cells from oxidative glutamate toxicity.
J Neurosci Res. 2006 Mar;83(4):702-9. doi: 10.1002/jnr.20736.
4
Increase in activity during calorie restriction requires Sirt1.
Science. 2005 Dec 9;310(5754):1641. doi: 10.1126/science.1118357.
5
Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS.
Science. 2005 Oct 14;310(5746):314-7. doi: 10.1126/science.1117728.
6
Evidence of increased oxidative damage in subjects with mild cognitive impairment.
Neurology. 2005 Apr 12;64(7):1152-6. doi: 10.1212/01.WNL.0000156156.13641.BA.
7
Xanthine oxidase, nitric oxide synthase and phospholipase A(2) produce reactive oxygen species via mitochondria.
Brain Res. 2005 Mar 10;1037(1-2):200-3. doi: 10.1016/j.brainres.2005.01.013.
8
Calorie restriction, SIRT1 and metabolism: understanding longevity.
Nat Rev Mol Cell Biol. 2005 Apr;6(4):298-305. doi: 10.1038/nrm1616.
9
Mitochondria, oxidants, and aging.
Cell. 2005 Feb 25;120(4):483-95. doi: 10.1016/j.cell.2005.02.001.
10
Calorie restriction--the SIR2 connection.
Cell. 2005 Feb 25;120(4):473-82. doi: 10.1016/j.cell.2005.01.029.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验