Suppr超能文献

衰老相关异染色质焦点形成的分子剖析

Molecular dissection of formation of senescence-associated heterochromatin foci.

作者信息

Zhang Rugang, Chen Wei, Adams Peter D

机构信息

Department of Basic Science, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.

出版信息

Mol Cell Biol. 2007 Mar;27(6):2343-58. doi: 10.1128/MCB.02019-06. Epub 2007 Jan 22.

Abstract

Senescence is characterized by an irreversible cell proliferation arrest. Specialized domains of facultative heterochromatin, called senescence-associated heterochromatin foci (SAHF), are thought to contribute to the irreversible cell cycle exit in many senescent cells by repressing the expression of proliferation-promoting genes such as cyclin A. SAHF contain known heterochromatin-forming proteins, such as heterochromatin protein 1 (HP1) and the histone H2A variant macroH2A, and other specialized chromatin proteins, such as HMGA proteins. Previously, we showed that a complex of histone chaperones, histone repressor A (HIRA) and antisilencing function 1a (ASF1a), plays a key role in the formation of SAHF. Here we have further dissected the series of events that contribute to SAHF formation. We show that each chromosome condenses into a single SAHF focus. Chromosome condensation depends on the ability of ASF1a to physically interact with its deposition substrate, histone H3, in addition to its cochaperone, HIRA. In cells entering senescence, HP1gamma, but not the related proteins HP1alpha and HP1beta, becomes phosphorylated on serine 93. This phosphorylation is required for efficient incorporation of HP1gamma into SAHF. Remarkably, however, a dramatic reduction in the amount of chromatin-bound HP1 proteins does not detectably affect chromosome condensation into SAHF. Moreover, abundant HP1 proteins are not required for the accumulation in SAHF of histone H3 methylated on lysine 9, the recruitment of macroH2A proteins, nor other hallmarks of senescence, such as the expression of senescence-associated beta-galactosidase activity and senescence-associated cell cycle exit. Based on our results, we propose a stepwise model for the formation of SAHF.

摘要

衰老的特征是细胞增殖不可逆地停止。兼性异染色质的特殊结构域,即衰老相关异染色质灶(SAHF),被认为通过抑制细胞周期蛋白A等促进增殖基因的表达,在许多衰老细胞中导致细胞周期不可逆地退出。SAHF包含已知的异染色质形成蛋白,如异染色质蛋白1(HP1)和组蛋白H2A变体macroH2A,以及其他特殊的染色质蛋白,如HMGA蛋白。此前,我们表明组蛋白伴侣、组蛋白抑制因子A(HIRA)和抗沉默功能1a(ASF1a)的复合物在SAHF的形成中起关键作用。在这里,我们进一步剖析了导致SAHF形成的一系列事件。我们发现每条染色体凝聚成单个SAHF灶。染色体凝聚不仅取决于ASF1a与其沉积底物组蛋白H3物理相互作用的能力,还取决于其辅助伴侣HIRA。在进入衰老的细胞中,HP1γ而非相关蛋白HP1α和HP1β在丝氨酸93处发生磷酸化。这种磷酸化是HP1γ有效并入SAHF所必需的。然而,值得注意的是,染色质结合的HP1蛋白数量的显著减少并未明显影响染色体凝聚成SAHF。此外,丰富的HP1蛋白对于赖氨酸9处甲基化的组蛋白H3在SAHF中的积累、macroH2A蛋白的募集,以及衰老的其他标志,如衰老相关β-半乳糖苷酶活性的表达和衰老相关细胞周期退出,并非必需。基于我们的结果,我们提出了一个SAHF形成的逐步模型。

相似文献

1
Molecular dissection of formation of senescence-associated heterochromatin foci.
Mol Cell Biol. 2007 Mar;27(6):2343-58. doi: 10.1128/MCB.02019-06. Epub 2007 Jan 22.
5
Dynamic assembly of chromatin complexes during cellular senescence: implications for the growth arrest of human melanocytic nevi.
Aging Cell. 2007 Aug;6(4):577-91. doi: 10.1111/j.1474-9726.2007.00308.x. Epub 2007 Jun 18.
7
Unfolding the story of chromatin organization in senescent cells.
Nucleus. 2015;6(4):254-60. doi: 10.1080/19491034.2015.1057670. Epub 2015 Jun 24.
8
Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging.
Gene. 2007 Aug 1;397(1-2):84-93. doi: 10.1016/j.gene.2007.04.020. Epub 2007 May 1.
9
Loss of linker histone H1 in cellular senescence.
J Cell Biol. 2006 Dec 18;175(6):869-80. doi: 10.1083/jcb.200604005. Epub 2006 Dec 11.

引用本文的文献

2
Interrogating the regulatory epigenome of cellular senescence.
Cell Mol Life Sci. 2025 Aug 31;82(1):328. doi: 10.1007/s00018-025-05848-w.
3
Oxidative Stress-Driven Cellular Senescence: Mechanistic Crosstalk and Therapeutic Horizons.
Antioxidants (Basel). 2025 Aug 12;14(8):987. doi: 10.3390/antiox14080987.
5
Studying Cellular Senescence Using the Model Organism Drosophila melanogaster.
Methods Mol Biol. 2025;2906:281-299. doi: 10.1007/978-1-0716-4426-3_17.
6
Large-Scale Clustered Transcriptional Silencing Associated With Cellular Senescence.
Aging Cell. 2025 Apr;24(4):e70015. doi: 10.1111/acel.70015. Epub 2025 Feb 19.
7
Remodeling of cytoskeleton, chromatin, and gene expression during mechanical rejuvenation of aged human dermal fibroblasts.
Mol Biol Cell. 2025 Jan 1;36(1):ar6. doi: 10.1091/mbc.E24-09-0430. Epub 2024 Dec 4.
9
Interplay between epigenetics, senescence and cellular redox metabolism in cancer and its therapeutic implications.
Redox Biol. 2024 Dec;78:103441. doi: 10.1016/j.redox.2024.103441. Epub 2024 Nov 23.
10
Aging, senescence, and cutaneous wound healing-a complex relationship.
Front Immunol. 2024 Oct 17;15:1429716. doi: 10.3389/fimmu.2024.1429716. eCollection 2024.

本文引用的文献

2
Loss of linker histone H1 in cellular senescence.
J Cell Biol. 2006 Dec 18;175(6):869-80. doi: 10.1083/jcb.200604005. Epub 2006 Dec 11.
4
PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state.
Mol Cell. 2006 Oct 20;24(2):309-16. doi: 10.1016/j.molcel.2006.08.019.
5
Structure of a human ASF1a-HIRA complex and insights into specificity of histone chaperone complex assembly.
Nat Struct Mol Biol. 2006 Oct;13(10):921-9. doi: 10.1038/nsmb1147. Epub 2006 Sep 17.
6
Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing.
Nature. 2006 Sep 28;443(7110):448-52. doi: 10.1038/nature05091. Epub 2006 Sep 6.
7
p16INK4a induces an age-dependent decline in islet regenerative potential.
Nature. 2006 Sep 28;443(7110):453-7. doi: 10.1038/nature05092. Epub 2006 Sep 6.
8
Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a.
Nature. 2006 Sep 28;443(7110):421-6. doi: 10.1038/nature05159. Epub 2006 Sep 6.
10
Histone H3.3 variant dynamics in the germline of Caenorhabditis elegans.
PLoS Genet. 2006 Jun;2(6):e97. doi: 10.1371/journal.pgen.0020097.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验