Lederer Carsten W, Torrisi Antonietta, Pantelidou Maria, Santama Niovi, Cavallaro Sebastiano
Department of Biological Sciences, University of Cyprus and Cyprus Institute of Neurology and Genetics, 1678 Nicosia, Cyprus.
BMC Genomics. 2007 Jan 23;8:26. doi: 10.1186/1471-2164-8-26.
Amyotrophic lateral sclerosis (ALS) is a fatal disorder caused by the progressive degeneration of motoneurons in brain and spinal cord. Despite identification of disease-linked mutations, the diversity of processes involved and the ambiguity of their relative importance in ALS pathogenesis still represent a major impediment to disease models as a basis for effective therapies. Moreover, the human motor cortex, although critical to ALS pathology and physiologically altered in most forms of the disease, has not been screened systematically for therapeutic targets.
By whole-genome expression profiling and stringent significance tests we identify genes and gene groups de-regulated in the motor cortex of patients with sporadic ALS, and interpret the role of individual candidate genes in a framework of differentially expressed pathways. Our findings emphasize the importance of defense responses and cytoskeletal, mitochondrial and proteasomal dysfunction, reflect reduced neuronal maintenance and vesicle trafficking, and implicate impaired ion homeostasis and glycolysis in ALS pathogenesis. Additionally, we compared our dataset with publicly available data for the SALS spinal cord, and show a high correlation of changes linked to the diseased state in the SALS motor cortex. In an analogous comparison with data for the Alzheimer's disease hippocampus we demonstrate a low correlation of global changes and a moderate correlation for changes specifically linked to the SALS diseased state.
Gene and sample numbers investigated allow pathway- and gene-based analyses by established error-correction methods, drawing a molecular portrait of the ALS motor cortex that faithfully represents many known disease features and uncovers several novel aspects of ALS pathology. Contrary to expectations for a tissue under oxidative stress, nuclear-encoded mitochondrial genes are uniformly down-regulated. Moreover, the down-regulation of mitochondrial and glycolytic genes implies a combined reduction of mitochondrial and cytoplasmic energy supply, with a possible role in the death of ALS motoneurons. Identifying candidate genes exclusively expressed in non-neuronal cells, we also highlight the importance of these cells in disease development in the motor cortex. Notably, some pathways and candidate genes identified by this study are direct or indirect targets of medication already applied to unrelated illnesses and point the way towards the rapid development of effective symptomatic ALS therapies.
肌萎缩侧索硬化症(ALS)是一种由脑和脊髓运动神经元进行性退化引起的致命性疾病。尽管已鉴定出与疾病相关的突变,但所涉及过程的多样性及其在ALS发病机制中相对重要性的不明确性,仍然是作为有效治疗基础的疾病模型的主要障碍。此外,人类运动皮层尽管对ALS病理至关重要且在大多数疾病形式中生理上发生改变,但尚未针对治疗靶点进行系统筛选。
通过全基因组表达谱分析和严格的显著性检验,我们鉴定出散发性ALS患者运动皮层中失调的基因和基因组,并在差异表达途径的框架内解释单个候选基因的作用。我们的发现强调了防御反应以及细胞骨架、线粒体和蛋白酶体功能障碍的重要性,反映出神经元维持和囊泡运输减少,并表明离子稳态和糖酵解受损与ALS发病机制有关。此外,我们将我们的数据集与公开可用的SALS脊髓数据进行比较,结果显示与SALS运动皮层疾病状态相关的变化具有高度相关性。在与阿尔茨海默病海马体数据的类似比较中,我们证明了整体变化的低相关性以及与SALS疾病状态特异性相关变化的中度相关性。
所研究的基因和样本数量允许通过既定的误差校正方法进行基于途径和基因的分析,描绘出ALS运动皮层的分子图谱,该图谱忠实地呈现了许多已知的疾病特征,并揭示了ALS病理的几个新方面。与对处于氧化应激下的组织的预期相反,核编码的线粒体基因一致下调。此外,线粒体和糖酵解基因的下调意味着线粒体和细胞质能量供应的联合减少,这可能在ALS运动神经元死亡中起作用。通过鉴定在非神经元细胞中特异性表达的候选基因,我们还强调了这些细胞在运动皮层疾病发展中的重要性。值得注意的是,本研究鉴定出的一些途径和候选基因是已应用于无关疾病的药物的直接或间接靶点,并为快速开发有效的ALS对症治疗指明了方向。