Suppr超能文献

核外分化与基因流动的有限岛屿模型。

Extranuclear differentiation and gene flow in the finite island model.

机构信息

Department of Zoology, NJ-15, University of Washington, Seattle, Washington 98195.

出版信息

Genetics. 1985 Feb;109(2):441-57. doi: 10.1093/genetics/109.2.441.

Abstract

Use of sequence information from extranuclear genomes to examine deme structure in natural populations has been hampered by lack of clear linkage between sequence relatedness and rates of mutation and migration among demes. Here, we approach this problem in two complementary ways. First, we develop a model of extranuclear genomes in a population divided into a finite number of demes. Sex-dependent migration, neutral mutation, unequal genetic contribution of separate sexes and random genetic drift in each deme are incorporated for generality. From this model, we derive the relationship between gene identity probabilities (between and within demes) and migration rate, mutation rate and effective deme size. Second, we show how within- and between-deme identity probabilities may be calculated from restriction maps of mitochondrial (mt) DNA. These results, when coupled with our results on gene flow and genetic differentiation, allow estimation of relative interdeme gene flow when deme sizes are constant and genetic variants are selectively neutral. We illustrate use of our results by reanalyzing published data on mtDNA in mouse populations from around the world and show that their geographic differentiation is consistent with an island model of deme structure.

摘要

利用核外基因组的序列信息来研究自然种群的居群结构,一直受到序列相关性与居群间突变和迁移速率之间缺乏明确联系的阻碍。在这里,我们通过两种互补的方法来解决这个问题。首先,我们建立了一个在有限数量的居群中划分的种群的核外基因组模型。为了通用性,模型中包含了性依赖的迁移、中性突变、雌雄个体遗传贡献的不平等以及每个居群中的随机遗传漂变。从这个模型中,我们推导出了居群间和居群内基因同一性概率(基因相同的概率)与迁移率、突变率和有效居群大小之间的关系。其次,我们展示了如何从线粒体(mt)DNA 的限制图谱中计算居群内和居群间的同一性概率。这些结果,与我们关于基因流动和遗传分化的结果相结合,允许在居群大小不变且遗传变异是选择性中性的情况下,估计相对的居群间基因流动。我们通过重新分析来自世界各地的老鼠种群的 mtDNA 的已发表数据来演示我们的结果的用途,并表明它们的地理分化与居群结构的岛屿模型一致。

相似文献

1
Extranuclear differentiation and gene flow in the finite island model.
Genetics. 1985 Feb;109(2):441-57. doi: 10.1093/genetics/109.2.441.
2
Homozygosity, effective number of alleles, and interdeme differentiation in subdivided populations.
Proc Natl Acad Sci U S A. 1985 Dec;82(24):8611-3. doi: 10.1073/pnas.82.24.8611.
3
The coalescent in an island model of population subdivision with variation among demes.
Theor Popul Biol. 2001 Mar;59(2):133-44. doi: 10.1006/tpbi.2000.1495.
4
THE ROLE OF DEME SIZE, REPRODUCTIVE PATTERNS, AND DISPERSAL IN THE DYNAMICS OF t-LETHAL HAPLOTYPES.
Evolution. 1993 Oct;47(5):1342-1359. doi: 10.1111/j.1558-5646.1993.tb02159.x.
5
Intra-deme molecular diversity in spatially expanding populations.
Mol Biol Evol. 2003 Jan;20(1):76-86. doi: 10.1093/molbev/msg009.
6
Phase III of Wright's shifting balance process and the variance among demes in migration rate.
Evolution. 2013 Jun;67(6):1591-7. doi: 10.1111/evo.12088. Epub 2013 Apr 4.
7
Evolutionary games in deme structured, finite populations.
J Theor Biol. 2012 Apr 21;299:106-12. doi: 10.1016/j.jtbi.2011.06.010. Epub 2011 Jun 21.
8
The effect of collective dispersal on the genetic structure of a subdivided population.
Evolution. 2013 Jun;67(6):1649-59. doi: 10.1111/evo.12111. Epub 2013 Apr 13.
9
Diffusion model of intergroup selection, with special reference to evolution of an altruistic character.
Proc Natl Acad Sci U S A. 1983 Oct;80(20):6317-21. doi: 10.1073/pnas.80.20.6317.
10
Analysis of linkage disequilibrium in an island model.
Theor Popul Biol. 1986 Apr;29(2):161-97. doi: 10.1016/0040-5809(86)90008-0.

引用本文的文献

1
Genetic Diversity of the root-knot nematode in Mulberry Based on the Mitochondrial COI Gene.
Ecol Evol. 2020 Jun 1;10(12):5391-5401. doi: 10.1002/ece3.6282. eCollection 2020 Jun.
2
Genetic differentiation of population based on mtDNA COII gene.
Saudi J Biol Sci. 2019 Jul;26(5):1032-1036. doi: 10.1016/j.sjbs.2019.04.016. Epub 2019 Apr 23.
3
Genetic Structure of Water Chestnut Beetle: Providing Evidence for Origin of Water Chestnut.
PLoS One. 2016 Jul 26;11(7):e0159557. doi: 10.1371/journal.pone.0159557. eCollection 2016.
8
Germline bottlenecks, biparental inheritance and selection on mitochondrial variants: a two-level selection model.
Genetics. 2005 Jul;170(3):1385-99. doi: 10.1534/genetics.104.039495. Epub 2005 May 23.

本文引用的文献

1
Two-locus problems in transmission genetics of mitochondria and chloroplasts.
Genetics. 1980 Oct;96(2):543-55. doi: 10.1093/genetics/96.2.543.
2
Isolation by Distance.
Genetics. 1943 Mar;28(2):114-38. doi: 10.1093/genetics/28.2.114.
3
Models of mitochondrial DNA transmission genetics and evolution in higher eucaryotes.
Genet Res. 1982 Aug;40(1):41-57. doi: 10.1017/s0016672300018899.
5
Mitochondrial gene flow.
Proc Natl Acad Sci U S A. 1984 Mar;81(6):1764-7. doi: 10.1073/pnas.81.6.1764.
6
Relaxed cellular controls and organelle heredity.
Science. 1983 Nov 4;222(4623):468-75. doi: 10.1126/science.6353578.
7
Length mutations in human mitochondrial DNA.
Genetics. 1983 Aug;104(4):699-711. doi: 10.1093/genetics/104.4.699.
8
Evolution of human mitochondrial DNA: a preliminary report.
Prog Clin Biol Res. 1982;103 Pt A:157-65.
9
Mitochondrial DNA sequences of primates: tempo and mode of evolution.
J Mol Evol. 1982;18(4):225-39. doi: 10.1007/BF01734101.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验