Suppr超能文献

温度相关的黑腹果蝇实验种群的分歧。I. 翅大小和形状变异的遗传和发育基础。

Temperature-Related Divergence in Experimental Populations of DROSOPHILA MELANOGASTER. I. Genetic and Developmental Basis of Wing Size and Shape Variation.

机构信息

Istituto di Genetica, Università degli Studi di Bologna, 40126 Bologna, Italy.

出版信息

Genetics. 1985 Apr;109(4):665-89. doi: 10.1093/genetics/109.4.665.

Abstract

The effects of environmental temperature on wing size and shape of Drosophila melanogaster were analyzed in populations derived from an Oregon laboratory strain kept at three temperatures (18 degrees , 25 degrees , 28 degrees ) for 4 yr. Temperature-directed selection was identified for both wing size and shape. The length of the four longitudinal veins, used as a test for wing size variations in the different populations, appears to be affected by both genetic and maternal influences. Vein expression appears to be dependent upon developmental pattern of the wing: veins belonging to the same compartment are coordinated in their expression and relative position, whereas veins belonging to different compartments are not. Both wing and cell areas show genetic divergence, particularly in the posterior compartment. Cell number seems to compensate for cell size variations. Such compensation is carried out both at the level of single organisms and at the level of population as a whole. The two compartments behave as individual units of selection.

摘要

在一个源自俄勒冈实验室品系的种群中,我们分析了环境温度对黑腹果蝇翅膀大小和形状的影响,该品系在三个温度(18 度、25 度、28 度)下分别保存了 4 年。温度定向选择作用于翅膀大小和形状。四个纵向翅脉的长度被用作不同种群中翅膀大小变化的测试,其似乎受到遗传和母性影响。翅脉的表达似乎取决于翅膀的发育模式:属于同一隔室的翅脉在表达和相对位置上是协调的,而属于不同隔室的翅脉则不是。翅膀和细胞区域都表现出遗传分歧,特别是在后隔室。细胞数量似乎补偿了细胞大小的变化。这种补偿既发生在单个生物体的水平上,也发生在整个种群的水平上。两个隔室表现为独立的选择单位。

相似文献

2
Developmental constraints and wing shape variation in natural populations of Drosophila melanogaster.
Heredity (Edinb). 1997 Dec;79 ( Pt 6):572-7. doi: 10.1038/hdy.1997.201.
5
Quantitative trait loci affecting components of wing shape in Drosophila melanogaster.
Genetics. 2000 Jun;155(2):671-83. doi: 10.1093/genetics/155.2.671.
6
Genetic variation for the positioning of wing veins in Drosophila melanogaster.
Evol Dev. 2000 Jan-Feb;2(1):16-24. doi: 10.1046/j.1525-142x.2000.00034.x.

引用本文的文献

3
Plasticity Through Canalization: The Contrasting Effect of Temperature on Trait Size and Growth in .
Front Cell Dev Biol. 2018 Nov 20;6:156. doi: 10.3389/fcell.2018.00156. eCollection 2018.
4
Geometric morphometrics analysis of the hind wing of leaf beetles: proximal and distal parts are separate modules.
Zookeys. 2017 Jul 20(685):131-149. doi: 10.3897/zookeys.685.13084. eCollection 2017.
5
Environmental heterogeneity does not affect levels of phenotypic plasticity in natural populations of three species.
Ecol Evol. 2017 Mar 19;7(8):2716-2724. doi: 10.1002/ece3.2904. eCollection 2017 Apr.
6
Flies evolved small bodies and cells at high or fluctuating temperatures.
Ecol Evol. 2016 Oct 12;6(22):7991-7996. doi: 10.1002/ece3.2534. eCollection 2016 Nov.
7
Are latitudinal clines in body size adaptive?
Oikos. 2010 Sep 1;119(9):1387-1390. doi: 10.1111/j.1600-0706.2010.18670.x.
10
Quantitative genetic analysis of the body size and shape of Drosophila buzzatii.
Theor Appl Genet. 1993 Jan;85(5):598-608. doi: 10.1007/BF00220919.

本文引用的文献

1
M--statistics and morphometric divergence.
Science. 1980 May 30;208(4447):1059-60. doi: 10.1126/science.208.4447.1059.
3
Parameters of the wing imaginal disc development of Drosophila melanogaster.
Dev Biol. 1971 Jan;24(1):61-87. doi: 10.1016/0012-1606(71)90047-9.
4
Developmental compartmentalisation of the wing disk of Drosophila.
Nat New Biol. 1973 Oct 24;245(147):251-3. doi: 10.1038/newbio245251a0.
5
Developmental compartmentalization in the dorsal mesothoracic disc of Drosophila.
Dev Biol. 1976 Jan;48(1):132-47. doi: 10.1016/0012-1606(76)90052-x.
6
Similarities and differences in latitudinal adaptation of two Drosophila sibling species.
Nature. 1975 Oct 16;257(5527):588-90. doi: 10.1038/257588a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验