Suppr超能文献

传染病中的随机放大。

Stochastic amplification in epidemics.

作者信息

Alonso David, McKane Alan J, Pascual Mercedes

机构信息

Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA.

出版信息

J R Soc Interface. 2007 Jun 22;4(14):575-82. doi: 10.1098/rsif.2006.0192.

Abstract

The role of stochasticity and its interplay with nonlinearity are central current issues in studies of the complex population patterns observed in nature, including the pronounced oscillations of wildlife and infectious diseases. The dynamics of childhood diseases have provided influential case studies to develop and test mathematical models with practical application to epidemiology, but are also of general relevance to the central question of whether simple nonlinear systems can explain and predict the complex temporal and spatial patterns observed in nature outside laboratory conditions. Here, we present a stochastic theory for the major dynamical transitions in epidemics from regular to irregular cycles, which relies on the discrete nature of disease transmission and low spatial coupling. The full spectrum of stochastic fluctuations is derived analytically to show how the amplification of noise varies across these transitions. The changes in noise amplification and coherence appear robust to seasonal forcing, questioning the role of seasonality and its interplay with deterministic components of epidemiological models. Childhood diseases are shown to fall into regions of parameter space of high noise amplification. This type of "endogenous" stochastic resonance may be relevant to population oscillations in nonlinear ecological systems in general.

摘要

随机性的作用及其与非线性的相互作用是当前自然界中观察到的复杂种群模式研究的核心问题,包括野生动物数量的显著波动和传染病的传播。儿童疾病的动态变化为开发和测试具有实际流行病学应用价值的数学模型提供了有影响力的案例研究,但对于简单非线性系统能否解释和预测实验室条件之外自然界中观察到的复杂时空模式这一核心问题也具有普遍意义。在此,我们提出一种关于流行病从规则周期到不规则周期的主要动态转变的随机理论,该理论依赖于疾病传播的离散性质和低空间耦合。通过解析得出了随机波动的全谱,以展示噪声放大在这些转变过程中的变化情况。噪声放大和相干性的变化似乎对季节性强迫具有鲁棒性,这对季节性的作用及其与流行病学模型确定性成分的相互作用提出了质疑。结果表明,儿童疾病处于高噪声放大的参数空间区域。这种类型的“内源性”随机共振可能总体上与非线性生态系统中的种群波动相关。

相似文献

1
Stochastic amplification in epidemics.
J R Soc Interface. 2007 Jun 22;4(14):575-82. doi: 10.1098/rsif.2006.0192.
2
Stochastic fluctuations in epidemics on networks.
J R Soc Interface. 2008 May 6;5(22):555-66. doi: 10.1098/rsif.2007.1206.
3
Regular biennial cycles in epidemics caused by parametric resonance.
J Theor Biol. 2017 Feb 21;415:137-144. doi: 10.1016/j.jtbi.2016.12.013. Epub 2016 Dec 20.
4
Spatial heterogeneity, nonlinear dynamics and chaos in infectious diseases.
Stat Methods Med Res. 1995 Jun;4(2):160-83. doi: 10.1177/096228029500400205.
5
Stochastic effects in a seasonally forced epidemic model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 1):041906. doi: 10.1103/PhysRevE.82.041906. Epub 2010 Oct 6.
6
Stochastic amplification in an epidemic model with seasonal forcing.
J Theor Biol. 2010 Nov 7;267(1):85-94. doi: 10.1016/j.jtbi.2010.08.014. Epub 2010 Aug 17.
7
Decreasing stochasticity through enhanced seasonality in measles epidemics.
J R Soc Interface. 2010 May 6;7(46):727-39. doi: 10.1098/rsif.2009.0317. Epub 2009 Oct 14.
8
A simple model for complex dynamical transitions in epidemics.
Science. 2000 Jan 28;287(5453):667-70. doi: 10.1126/science.287.5453.667.
9
Chaotic stochasticity: a ubiquitous source of unpredictability in epidemics.
Proc Biol Sci. 1991 Nov 22;246(1316):179-84. doi: 10.1098/rspb.1991.0142.
10
Random fluctuations around a stable limit cycle in a stochastic system with parametric forcing.
J Math Biol. 2019 Dec;79(6-7):2133-2155. doi: 10.1007/s00285-019-01423-7. Epub 2019 Sep 13.

引用本文的文献

1
Efficient approximations of transcriptional bursting effects on the dynamics of a gene regulatory network.
J R Soc Interface. 2025 Jun;22(227):20250170. doi: 10.1098/rsif.2025.0170. Epub 2025 Jun 25.
2
Increasing environmental fluctuations can dampen variability of endogenously cycling populations.
R Soc Open Sci. 2024 Dec 18;11(12):241066. doi: 10.1098/rsos.241066. eCollection 2024 Dec.
3
Cell coupling compensates for changes in single-cell Her6 dynamics and provides phenotypic robustness.
Development. 2024 May 15;151(10). doi: 10.1242/dev.202640. Epub 2024 May 20.
5
A stochastic model explains the periodicity phenomenon of influenza on network.
Sci Rep. 2021 Oct 25;11(1):20996. doi: 10.1038/s41598-021-00260-3.
6
Effects of stochasticity on the length and behaviour of ecological transients.
J R Soc Interface. 2021 Jul;18(180):20210257. doi: 10.1098/rsif.2021.0257. Epub 2021 Jul 7.
7
Fluctuation spectra of large random dynamical systems reveal hidden structure in ecological networks.
Nat Commun. 2021 Jun 15;12(1):3625. doi: 10.1038/s41467-021-23757-x.
8
Cyclic epidemics and extreme outbreaks induced by hydro-climatic variability and memory.
J R Soc Interface. 2020 Oct;17(171):20200521. doi: 10.1098/rsif.2020.0521. Epub 2020 Oct 21.
9
Transient indicators of tipping points in infectious diseases.
J R Soc Interface. 2020 Sep;17(170):20200094. doi: 10.1098/rsif.2020.0094. Epub 2020 Sep 16.
10
Comparative infection modeling and control of COVID-19 transmission patterns in China, South Korea, Italy and Iran.
Sci Total Environ. 2020 Dec 10;747:141447. doi: 10.1016/j.scitotenv.2020.141447. Epub 2020 Aug 3.

本文引用的文献

1
The interplay between determinism and stochasticity in childhood diseases.
Am Nat. 2002 May;159(5):469-81. doi: 10.1086/339467.
2
Transients: the key to long-term ecological understanding?
Trends Ecol Evol. 2004 Jan;19(1):39-45. doi: 10.1016/j.tree.2003.09.007.
3
Predator-prey cycles from resonant amplification of demographic stochasticity.
Phys Rev Lett. 2005 Jun 3;94(21):218102. doi: 10.1103/PhysRevLett.94.218102. Epub 2005 Jun 2.
4
Host immunity and synchronized epidemics of syphilis across the United States.
Nature. 2005 Jan 27;433(7024):417-21. doi: 10.1038/nature03072.
5
Dynamical resonance can account for seasonality of influenza epidemics.
Proc Natl Acad Sci U S A. 2004 Nov 30;101(48):16915-6. doi: 10.1073/pnas.0407293101. Epub 2004 Nov 19.
6
Measles metapopulation dynamics: a gravity model for epidemiological coupling and dynamics.
Am Nat. 2004 Aug;164(2):267-81. doi: 10.1086/422341. Epub 2004 Jul 8.
7
Spatiotemporal dynamics of epidemics: synchrony in metapopulation models.
Math Biosci. 2004 Mar-Apr;188:1-16. doi: 10.1016/j.mbs.2003.09.003.
8
Transients and attractors in epidemics.
Proc Biol Sci. 2003 Aug 7;270(1524):1573-8. doi: 10.1098/rspb.2003.2410.
9
Measles outbreaks in a population with declining vaccine uptake.
Science. 2003 Aug 8;301(5634):804. doi: 10.1126/science.1086726.
10
Perspectives: epidemiology. Simple rules with complex dynamics.
Science. 2000 Jan 28;287(5453):601-2. doi: 10.1126/science.287.5453.601.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验