Alonso David, McKane Alan J, Pascual Mercedes
Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA.
J R Soc Interface. 2007 Jun 22;4(14):575-82. doi: 10.1098/rsif.2006.0192.
The role of stochasticity and its interplay with nonlinearity are central current issues in studies of the complex population patterns observed in nature, including the pronounced oscillations of wildlife and infectious diseases. The dynamics of childhood diseases have provided influential case studies to develop and test mathematical models with practical application to epidemiology, but are also of general relevance to the central question of whether simple nonlinear systems can explain and predict the complex temporal and spatial patterns observed in nature outside laboratory conditions. Here, we present a stochastic theory for the major dynamical transitions in epidemics from regular to irregular cycles, which relies on the discrete nature of disease transmission and low spatial coupling. The full spectrum of stochastic fluctuations is derived analytically to show how the amplification of noise varies across these transitions. The changes in noise amplification and coherence appear robust to seasonal forcing, questioning the role of seasonality and its interplay with deterministic components of epidemiological models. Childhood diseases are shown to fall into regions of parameter space of high noise amplification. This type of "endogenous" stochastic resonance may be relevant to population oscillations in nonlinear ecological systems in general.
随机性的作用及其与非线性的相互作用是当前自然界中观察到的复杂种群模式研究的核心问题,包括野生动物数量的显著波动和传染病的传播。儿童疾病的动态变化为开发和测试具有实际流行病学应用价值的数学模型提供了有影响力的案例研究,但对于简单非线性系统能否解释和预测实验室条件之外自然界中观察到的复杂时空模式这一核心问题也具有普遍意义。在此,我们提出一种关于流行病从规则周期到不规则周期的主要动态转变的随机理论,该理论依赖于疾病传播的离散性质和低空间耦合。通过解析得出了随机波动的全谱,以展示噪声放大在这些转变过程中的变化情况。噪声放大和相干性的变化似乎对季节性强迫具有鲁棒性,这对季节性的作用及其与流行病学模型确定性成分的相互作用提出了质疑。结果表明,儿童疾病处于高噪声放大的参数空间区域。这种类型的“内源性”随机共振可能总体上与非线性生态系统中的种群波动相关。