Suppr超能文献

由参数共振引起的流行病中的定期两年周期。

Regular biennial cycles in epidemics caused by parametric resonance.

作者信息

Chen Shiyang, Epureanu Bogdan

机构信息

Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, MI 48109, USA.

出版信息

J Theor Biol. 2017 Feb 21;415:137-144. doi: 10.1016/j.jtbi.2016.12.013. Epub 2016 Dec 20.

Abstract

The interaction between nonlinearity and seasonal forcing in childhood infectious diseases often leads to multiyear cycles with large amplitude. Regular biennial cycles in particular were observed in measles reports throughout the world. The objective of this paper is to understand the mechanism of such biennial cycles, especially the conditions under which the large amplitude biennial oscillation might appear. It is proposed that such biennial cycles are caused by parametric resonance, which might occur when varying the parameter at a frequency close to twice the natural frequency of the system. The analysis is carried out by solving an SIR model semi-analytically using method of multiple scales (MMS). This analysis shows how parametric resonance occurs due to the interaction between nonlinearity and periodic forcing. Using the MMS solution, the boundary between the resonance region and the non-resonance region in the parameter space is obtained. The effects of different parameters on the triggering of parametric resonance are studied, such as transmission rate, recovery rate, birth rate and amplitude of seasonality. The effects of stochasticity on the onset of parametric resonance are also studied.

摘要

儿童传染病中非线性与季节性强迫之间的相互作用常常导致大振幅的多年周期。特别是在世界各地的麻疹报告中观察到了有规律的两年周期。本文的目的是了解这种两年周期的机制,尤其是大振幅两年振荡可能出现的条件。有人提出,这种两年周期是由参数共振引起的,当以接近系统固有频率两倍的频率改变参数时可能会发生这种共振。通过使用多尺度法(MMS)对SIR模型进行半解析求解来进行分析。该分析表明了由于非线性与周期强迫之间的相互作用而产生参数共振的方式。利用MMS解,得到了参数空间中共振区域与非共振区域之间的边界。研究了不同参数对参数共振触发的影响,如传播率、恢复率、出生率和季节性振幅。还研究了随机性对参数共振发生的影响。

相似文献

1
Regular biennial cycles in epidemics caused by parametric resonance.
J Theor Biol. 2017 Feb 21;415:137-144. doi: 10.1016/j.jtbi.2016.12.013. Epub 2016 Dec 20.
2
Seasonality and period-doubling bifurcations in an epidemic model.
J Theor Biol. 1984 Oct 21;110(4):665-79. doi: 10.1016/s0022-5193(84)80150-2.
3
Stochastic amplification in epidemics.
J R Soc Interface. 2007 Jun 22;4(14):575-82. doi: 10.1098/rsif.2006.0192.
4
Determinants of periodicity in seasonally driven epidemics.
J Theor Biol. 2012 Jul 21;305:88-95. doi: 10.1016/j.jtbi.2012.02.031. Epub 2012 Mar 23.
5
Stochastic effects in a seasonally forced epidemic model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 1):041906. doi: 10.1103/PhysRevE.82.041906. Epub 2010 Oct 6.
6
Stochastic amplification in an epidemic model with seasonal forcing.
J Theor Biol. 2010 Nov 7;267(1):85-94. doi: 10.1016/j.jtbi.2010.08.014. Epub 2010 Aug 17.
7
Impact of birth seasonality on dynamics of acute immunizing infections in Sub-Saharan Africa.
PLoS One. 2013 Oct 18;8(10):e75806. doi: 10.1371/journal.pone.0075806. eCollection 2013.
8
Impact of human mobility on the periodicities and mechanisms underlying measles dynamics.
J R Soc Interface. 2015 Mar 6;12(104):20141317. doi: 10.1098/rsif.2014.1317.
9
Spatial heterogeneity, nonlinear dynamics and chaos in infectious diseases.
Stat Methods Med Res. 1995 Jun;4(2):160-83. doi: 10.1177/096228029500400205.
10
Stochastic fluctuations in epidemics on networks.
J R Soc Interface. 2008 May 6;5(22):555-66. doi: 10.1098/rsif.2007.1206.

引用本文的文献

1
Test for Covid-19 seasonality and the risk of second waves.
One Health. 2021 Jun;12:100202. doi: 10.1016/j.onehlt.2020.100202. Epub 2020 Nov 29.
2
γ-Tocotrienol-Loaded Liposomes for Radioprotection from Hematopoietic Side Effects Caused by Radiotherapeutic Drugs.
J Nucl Med. 2021 Apr;62(4):584-590. doi: 10.2967/jnumed.120.244681. Epub 2020 Aug 21.

本文引用的文献

1
Synchrony of sylvatic dengue isolations: a multi-host, multi-vector SIR model of dengue virus transmission in Senegal.
PLoS Negl Trop Dis. 2012;6(11):e1928. doi: 10.1371/journal.pntd.0001928. Epub 2012 Nov 29.
2
Stochastic amplification in an epidemic model with seasonal forcing.
J Theor Biol. 2010 Nov 7;267(1):85-94. doi: 10.1016/j.jtbi.2010.08.014. Epub 2010 Aug 17.
3
Impact of vaccination and birth rate on the epidemiology of pertussis: a comparative study in 64 countries.
Proc Biol Sci. 2010 Nov 7;277(1698):3239-45. doi: 10.1098/rspb.2010.0994. Epub 2010 Jun 9.
4
The impact of the demographic transition on dengue in Thailand: insights from a statistical analysis and mathematical modeling.
PLoS Med. 2009 Sep;6(9):e1000139. doi: 10.1371/journal.pmed.1000139. Epub 2009 Sep 1.
5
Seasonal dynamics of recurrent epidemics.
Nature. 2007 Mar 29;446(7135):533-6. doi: 10.1038/nature05638.
6
Stochastic amplification in epidemics.
J R Soc Interface. 2007 Jun 22;4(14):575-82. doi: 10.1098/rsif.2006.0192.
7
Seasonality and the dynamics of infectious diseases.
Ecol Lett. 2006 Apr;9(4):467-84. doi: 10.1111/j.1461-0248.2005.00879.x.
8
Transyears: new endpoints for gerontology and geriatrics or confusing sources of variability?
J Gerontol A Biol Sci Med Sci. 2004 Dec;59(12):1344-7. doi: 10.1093/gerona/59.12.1344.
9
The dynamics of two diffusively coupled predator-prey populations.
Theor Popul Biol. 2001 Mar;59(2):119-31. doi: 10.1006/tpbi.2000.1506.
10
A simple model for complex dynamical transitions in epidemics.
Science. 2000 Jan 28;287(5453):667-70. doi: 10.1126/science.287.5453.667.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验