Suppr超能文献

鸡耳蜗核终球突触的发育与消除

Development and elimination of endbulb synapses in the chick cochlear nucleus.

作者信息

Lu Tao, Trussell Laurence O

机构信息

Oregon Hearing Research Center/Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA.

出版信息

J Neurosci. 2007 Jan 24;27(4):808-17. doi: 10.1523/JNEUROSCI.4871-06.2007.

Abstract

The development of synaptic function was examined at auditory nerve synapses in the rostromedial region of the cochlear nucleus magnocellularis of the chick. EPSCs were studied beginning at embryonic day 12 (E12), when synaptic transmission was first observed, through E19. The amplitude of evoked EPSCs produced by AMPA receptor (AMPA-R) increased 30-fold over this age range, whereas NMDA receptor (NMDA-R)-mediated transmission peaked at E14 and then declined almost completely. At E12, >80% of the miniature EPSCs exhibited both receptor components, and <10% were NMDA-R only. With age, the contribution of NMDA-R to miniature EPSCs steadily declined, suggesting that NMDA-R number is gradually reduced at individual postsynaptic sites. Between E12 and E16, the number of axonal inputs to each cell reduced by half. In simultaneous recordings from adjacent neurons, synchronous EPSCs were observed that resulted from spontaneous firing of the same presynaptic fiber. The difference in amplitude of the EPSCs in the two cells was greater in E14 than E12, whereas at E16 synchronous events were no longer observed, suggesting that the weaker input was destined for elimination. The relative amplitude of the NMDA-R component, compared with the AMPA-R component, was larger for the weaker inputs. When elimination was underway, AMPA-R quantal size was much reduced for the weakest terminals. Thus, elimination of auditory nerve terminals and pruning of axonal branches is preceded by a reduction in quantal efficacy.

摘要

在雏鸡延髓巨细胞核蜗神经突触处,对突触功能的发育进行了研究。从胚胎第12天(E12)开始研究兴奋性突触后电流(EPSCs),此时首次观察到突触传递,一直持续到E19。在这个年龄范围内,由α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPA-R)产生的诱发EPSCs的幅度增加了30倍,而N-甲基-D-天冬氨酸受体(NMDA-R)介导的传递在E14达到峰值,然后几乎完全下降。在E12时,超过80%的微小EPSCs表现出两种受体成分,只有不到10%仅由NMDA-R介导。随着年龄的增长,NMDA-R对微小EPSCs的贡献稳步下降,这表明在单个突触后位点,NMDA-R的数量逐渐减少。在E12和E16之间,每个细胞的轴突输入数量减少了一半。在对相邻神经元的同步记录中,观察到由同一突触前纤维的自发放电引起的同步EPSCs。在E14时,两个细胞中EPSCs幅度的差异比E12时更大,而在E16时不再观察到同步事件,这表明较弱的输入注定会被消除。对于较弱的输入,与AMPA-R成分相比,NMDA-R成分的相对幅度更大。当消除过程进行时,最弱终末的AMPA-R量子大小大幅降低。因此,在蜗神经终末的消除和轴突分支的修剪之前,量子效能会降低。

相似文献

1
Development and elimination of endbulb synapses in the chick cochlear nucleus.
J Neurosci. 2007 Jan 24;27(4):808-17. doi: 10.1523/JNEUROSCI.4871-06.2007.
2
Synaptic physiology in the cochlear nucleus angularis of the chick.
J Neurophysiol. 2005 May;93(5):2520-9. doi: 10.1152/jn.00898.2004. Epub 2004 Dec 22.
3
Developmental changes in EPSC quantal size and quantal content at a central glutamatergic synapse in rat.
J Physiol. 1998 Sep 15;511 ( Pt 3)(Pt 3):861-9. doi: 10.1111/j.1469-7793.1998.861bg.x.
6
Maturation of synaptic transmission at end-bulb synapses of the cochlear nucleus.
J Neurosci. 2001 Dec 1;21(23):9487-98. doi: 10.1523/JNEUROSCI.21-23-09487.2001.
7
Voltage clamp analysis of excitatory synaptic transmission in the avian nucleus magnocellularis.
J Physiol. 1994 Oct 1;480 ( Pt 1)(Pt 1):123-36. doi: 10.1113/jphysiol.1994.sp020346.
9
Early development of intrinsic and synaptic properties of chicken nucleus laminaris neurons.
Neuroscience. 2008 Apr 22;153(1):131-43. doi: 10.1016/j.neuroscience.2008.01.059. Epub 2008 Feb 13.
10
Target-specific regulation of presynaptic release properties at auditory nerve terminals in the avian cochlear nucleus.
J Neurophysiol. 2016 Mar;115(3):1679-90. doi: 10.1152/jn.00752.2015. Epub 2015 Dec 30.

引用本文的文献

1
Auditory hair cells and spiral ganglion neurons regenerate synapses with refined release properties in vitro.
Proc Natl Acad Sci U S A. 2024 Jul 30;121(31):e2315599121. doi: 10.1073/pnas.2315599121. Epub 2024 Jul 26.
3
Tonotopic Specializations in Number, Size, and Reversal Potential of GABAergic Inputs Fine-Tune Temporal Coding at Avian Cochlear Nucleus.
J Neurosci. 2021 Oct 27;41(43):8904-8916. doi: 10.1523/JNEUROSCI.0884-21.2021. Epub 2021 Sep 13.
4
Spatiotemporal Analysis of Cochlear Nucleus Innervation by Spiral Ganglion Neurons that Serve Distinct Regions of the Cochlea.
Neuroscience. 2020 Oct 15;446:43-58. doi: 10.1016/j.neuroscience.2020.08.029. Epub 2020 Aug 29.
5
Functional Development of Principal Neurons in the Anteroventral Cochlear Nucleus Extends Beyond Hearing Onset.
Front Cell Neurosci. 2019 Mar 28;13:119. doi: 10.3389/fncel.2019.00119. eCollection 2019.
6
Tonotopic Differentiation of Coupling between Ca and Kv1.1 Expression in Brainstem Auditory Circuit.
iScience. 2019 Mar 29;13:199-213. doi: 10.1016/j.isci.2019.02.022. Epub 2019 Feb 27.
7
Need for Speed and Precision: Structural and Functional Specialization in the Cochlear Nucleus of the Avian Auditory System.
J Exp Neurosci. 2018 Dec 12;12:1179069518815628. doi: 10.1177/1179069518815628. eCollection 2018.
8
Diverse Intrinsic Properties Shape Functional Phenotype of Low-Frequency Neurons in the Auditory Brainstem.
Front Cell Neurosci. 2018 Jun 26;12:175. doi: 10.3389/fncel.2018.00175. eCollection 2018.
9
Ion channel mechanisms underlying frequency-firing patterns of the avian nucleus magnocellularis: A computational model.
Channels (Austin). 2017 Sep 3;11(5):444-458. doi: 10.1080/19336950.2017.1327493. Epub 2017 May 8.
10
Tonotopic action potential tuning of maturing auditory neurons through endogenous ATP.
J Physiol. 2017 Feb 15;595(4):1315-1337. doi: 10.1113/JP273272. Epub 2016 Dec 28.

本文引用的文献

1
AMPA receptors regulate experience-dependent dendritic arbor growth in vivo.
Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12127-31. doi: 10.1073/pnas.0602670103. Epub 2006 Aug 1.
2
Formation of the avian nucleus magnocellularis from the auditory anlage.
J Comp Neurol. 2006 Oct 1;498(4):433-42. doi: 10.1002/cne.21031.
3
Synaptogenesis of the calyx of Held: rapid onset of function and one-to-one morphological innervation.
J Neurosci. 2006 May 17;26(20):5511-23. doi: 10.1523/JNEUROSCI.5525-05.2006.
4
Branching of calyceal afferents during postnatal development in the rat auditory brainstem.
J Comp Neurol. 2006 May 10;496(2):214-28. doi: 10.1002/cne.20918.
5
Tonotopic gradients of membrane and synaptic properties for neurons of the chicken nucleus magnocellularis.
J Neurosci. 2004 Aug 25;24(34):7514-23. doi: 10.1523/JNEUROSCI.0566-04.2004.
6
Development of NMDA R1 expression in chicken auditory brainstem.
Hear Res. 2004 May;191(1-2):79-89. doi: 10.1016/j.heares.2004.01.007.
9
Development of the specialized AMPA receptors of auditory neurons.
J Neurobiol. 2002 Sep 5;52(3):189-202. doi: 10.1002/neu.10078.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验