López-Mirabal H Reynaldo, Thorsen Michael, Kielland-Brandt Morten C, Toledano Michel B, Winther Jakob R
Carlsberg Laboratory, Gamle Carlsberg Vej, Copenhagen Valby, Denmark.
FEMS Yeast Res. 2007 May;7(3):391-403. doi: 10.1111/j.1567-1364.2006.00202.x. Epub 2007 Jan 24.
Dipyridyl disulfide (DPS) is a highly reactive thiol oxidant that functions as electron acceptor in thiol-disulfide exchange reactions. DPS is very toxic to yeasts, impairing growth at low micromolar concentrations. The genes TRX2 (thioredoxin), SOD1 (superoxide dismutase), GSH1 (gamma-glutamyl-cysteine synthetase) and, particularly, GLR1 (glutathione reductase) are required for survival on DPS. DPS is uniquely thiol-specific, and we found that the cellular mechanisms for DPS detoxification differ substantially from that of the commonly used thiol oxidant diamide. In contrast to this oxidant, the full antioxidant pools of glutathione (GSH) and thioredoxin are required for resistance to DPS. We found that DPS-sensitive mutants display increases in the disulfide form of GSH (GSSG) during DPS exposure that roughly correlate with their more oxidizing GSH redox potential in the cytosol and their degree of DPS sensitivity. DPS seems to induce a specific disulfide stress, where an increase in the cytoplasmic/nuclear GSSG/GSH ratio results in putative DPS target(s) becoming sensitive to DPS.
二吡啶二硫化物(DPS)是一种高反应性的硫醇氧化剂,在硫醇-二硫化物交换反应中作为电子受体发挥作用。DPS对酵母具有很高的毒性,在低微摩尔浓度下就会抑制其生长。TRX2(硫氧还蛋白)、SOD1(超氧化物歧化酶)、GSH1(γ-谷氨酰-半胱氨酸合成酶),特别是GLR1(谷胱甘肽还原酶)基因是在DPS上存活所必需的。DPS对硫醇具有独特的特异性,我们发现DPS解毒的细胞机制与常用的硫醇氧化剂二酰胺有很大不同。与这种氧化剂不同,谷胱甘肽(GSH)和硫氧还蛋白的完整抗氧化剂库是抵抗DPS所必需的。我们发现,对DPS敏感的突变体在暴露于DPS期间,谷胱甘肽的二硫化物形式(GSSG)会增加,这大致与其胞质中更具氧化性的谷胱甘肽氧化还原电位及其对DPS的敏感程度相关。DPS似乎会诱导一种特定的二硫化物应激,其中细胞质/细胞核中GSSG/GSH比值的增加会导致假定的DPS靶标对DPS变得敏感。