Suppr超能文献

利用模型识别医院感染途径:香港一家大型医院的严重急性呼吸系统综合症暴发

Using models to identify routes of nosocomial infection: a large hospital outbreak of SARS in Hong Kong.

作者信息

Kwok Kin On, Leung Gabriel M, Lam Wai Yee, Riley Steven

机构信息

Department of Community Medicine and School of Public Health, The University of Hong Kong, 5/F 21 Sassoon Road, Pokfulam, Hong Kong SAR, China.

出版信息

Proc Biol Sci. 2007 Mar 7;274(1610):611-7. doi: 10.1098/rspb.2006.0026.

Abstract

Two factors dominated the epidemiology of severe acute respiratory syndrome (SARS) during the 2002-2003 global outbreak, namely super-spreading events (SSE) and hospital infections. Although both factors were important during the first and the largest hospital outbreak in Hong Kong, the relative importance of different routes of infection has not yet been quantified. We estimated the parameters of a novel mathematical model of hospital infection using SARS episode data. These estimates described levels of transmission between the index super-spreader, staff and patients, and were used to compare three plausible hypotheses. The broadest of the supported hypotheses ascribes the initial surge in cases to a single super-spreading individual and suggests that the per capita risk of infection to patients increased approximately one month after the start of the outbreak. Our estimate for the number of cases caused by the SSE is substantially lower than the previously reported values, which were mostly based on self-reported exposure information. This discrepancy suggests that the early identification of the index case as a super-spreader might have led to biased contact tracing, resulting in too few cases being attributed to staff-to-staff transmission. We propose that in future outbreaks of SARS or other directly transmissible respiratory pathogens, simple mathematical models could be used to validate preliminary conclusions concerning the relative importance of different routes of transmission with important implications for infection control.

摘要

在2002 - 2003年全球严重急性呼吸综合征(SARS)疫情期间,有两个因素主导了其流行病学特征,即超级传播事件(SSE)和医院感染。尽管在香港首次也是规模最大的医院疫情中这两个因素都很重要,但不同感染途径的相对重要性尚未得到量化。我们利用SARS疫情数据估计了一种新型医院感染数学模型的参数。这些估计描述了首例超级传播者、医护人员和患者之间的传播水平,并用于比较三种合理的假设。得到支持的最宽泛假设将病例的最初激增归因于单个超级传播个体,并表明疫情开始约一个月后患者的人均感染风险增加。我们对超级传播事件导致的病例数估计远低于先前报告的值,先前的值大多基于自我报告的接触信息。这种差异表明,将首例病例早期认定为超级传播者可能导致接触者追踪存在偏差,致使归因于医护人员之间传播的病例过少。我们建议,在未来SARS或其他直接传播的呼吸道病原体疫情中,简单的数学模型可用于验证关于不同传播途径相对重要性的初步结论,这对感染控制具有重要意义。

相似文献

1
Using models to identify routes of nosocomial infection: a large hospital outbreak of SARS in Hong Kong.
Proc Biol Sci. 2007 Mar 7;274(1610):611-7. doi: 10.1098/rspb.2006.0026.
4
Temporal variability and social heterogeneity in disease transmission: the case of SARS in Hong Kong.
PLoS Comput Biol. 2009 Aug;5(8):e1000471. doi: 10.1371/journal.pcbi.1000471. Epub 2009 Aug 21.
5
Role of fomites in SARS transmission during the largest hospital outbreak in Hong Kong.
PLoS One. 2017 Jul 20;12(7):e0181558. doi: 10.1371/journal.pone.0181558. eCollection 2017.
7
Role of air distribution in SARS transmission during the largest nosocomial outbreak in Hong Kong.
Indoor Air. 2005 Apr;15(2):83-95. doi: 10.1111/j.1600-0668.2004.00317.x.
8
Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions.
Science. 2003 Jun 20;300(5627):1961-6. doi: 10.1126/science.1086478. Epub 2003 May 23.
10
SARS in three categories of hospital workers, Hong Kong.
Emerg Infect Dis. 2004 Aug;10(8):1399-404. doi: 10.3201/eid1008.040041.

引用本文的文献

1
Utilizing large language models in infectious disease transmission modelling for public health preparedness.
Comput Struct Biotechnol J. 2024 Aug 8;23:3254-3257. doi: 10.1016/j.csbj.2024.08.006. eCollection 2024 Dec.
2
Effect of prior outbreak work experience to future outbreak responses for nurses in Hong Kong: A cross-sectional study.
Collegian. 2022 Oct;29(5):612-620. doi: 10.1016/j.colegn.2022.02.002. Epub 2022 Feb 20.
3
Acceptance of COVID-19 vaccine and associated factors among health professionals working in Hospitals of South Gondar Zone, Northwest Ethiopia.
Hum Vaccin Immunother. 2021 Dec 2;17(12):4925-4933. doi: 10.1080/21645515.2021.2013082. Epub 2022 Feb 4.
4
Profiling vaccine believers and skeptics in nurses: A latent profile analysis.
Int J Nurs Stud. 2022 Feb;126:104142. doi: 10.1016/j.ijnurstu.2021.104142. Epub 2021 Nov 27.
5
Forecast of the outbreak of COVID-19 using artificial neural network: Case study Qatar, Spain, and Italy.
Results Phys. 2021 Aug;27:104484. doi: 10.1016/j.rinp.2021.104484. Epub 2021 Jun 21.
6
Editor's Choice: Influenza vaccine uptake, COVID-19 vaccination intention and vaccine hesitancy among nurses: A survey.
Int J Nurs Stud. 2021 Feb;114:103854. doi: 10.1016/j.ijnurstu.2020.103854. Epub 2020 Dec 5.
9
Mathematical and computational approaches to epidemic modeling: a comprehensive review.
Front Comput Sci (Berl). 2015;9(5):806-826. doi: 10.1007/s11704-014-3369-2. Epub 2015 Oct 9.
10
Epidemic Models of Contact Tracing: Systematic Review of Transmission Studies of Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome.
Comput Struct Biotechnol J. 2019 Jan 26;17:186-194. doi: 10.1016/j.csbj.2019.01.003. eCollection 2019.

本文引用的文献

1
Critical role of nosocomial transmission in the toronto sars outbreak.
Math Biosci Eng. 2004 Jun;1(1):1-13. doi: 10.3934/mbe.2004.1.1.
2
Bayesian modelling of an epidemic of severe acute respiratory syndrome.
Bull Math Biol. 2006 May;68(4):889-917. doi: 10.1007/s11538-005-9005-4. Epub 2006 Apr 8.
3
Establishment of multiple sublineages of H5N1 influenza virus in Asia: implications for pandemic control.
Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2845-50. doi: 10.1073/pnas.0511120103. Epub 2006 Feb 10.
5
A probabilistic transmission dynamic model to assess indoor airborne infection risks.
Risk Anal. 2005 Oct;25(5):1097-107. doi: 10.1111/j.1539-6924.2005.00663.x.
7
Appropriate models for the management of infectious diseases.
PLoS Med. 2005 Jul;2(7):e174. doi: 10.1371/journal.pmed.0020174. Epub 2005 Jul 26.
9
Understanding the spatial clustering of severe acute respiratory syndrome (SARS) in Hong Kong.
Environ Health Perspect. 2004 Nov;112(15):1550-6. doi: 10.1289/ehp.7117.
10
The epidemiology of severe acute respiratory syndrome in the 2003 Hong Kong epidemic: an analysis of all 1755 patients.
Ann Intern Med. 2004 Nov 2;141(9):662-73. doi: 10.7326/0003-4819-141-9-200411020-00006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验