Suppr超能文献

空间恒常性与大脑:来自神经网络的见解

Spatial constancy and the brain: insights from neural networks.

作者信息

White Robert L, Snyder Lawrence H

机构信息

Department of Anatomy and Neurobiology, Washington University School of Medicine, Box 8108, 660 South Euclid Avenue, St Louis, MO 63110, USA.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2007 Mar 29;362(1479):375-82. doi: 10.1098/rstb.2006.1965.

Abstract

To form an accurate internal representation of visual space, the brain must accurately account for movements of the eyes, head or body. Updating of internal representations in response to these movements is especially important when remembering spatial information, such as the location of an object, since the brain must rely on non-visual extra-retinal signals to compensate for self-generated movements. We investigated the computations underlying spatial updating by constructing a recurrent neural network model to store and update a spatial location based on a gaze shift signal, and to do so flexibly based on a contextual cue. We observed a striking similarity between the patterns of behaviour produced by the model and monkeys trained to perform the same task, as well as between the hidden units of the model and neurons in the lateral intraparietal area (LIP). In this report, we describe the similarities between the model and single unit physiology to illustrate the usefulness of neural networks as a tool for understanding specific computations performed by the brain.

摘要

为了形成视觉空间的准确内部表征,大脑必须精确地考虑眼睛、头部或身体的运动。当记忆空间信息(如物体的位置)时,响应这些运动对内部表征进行更新尤为重要,因为大脑必须依靠非视觉的视网膜外信号来补偿自身产生的运动。我们通过构建一个循环神经网络模型来研究空间更新背后的计算过程,该模型基于注视转移信号存储和更新空间位置,并根据上下文线索灵活地进行更新。我们观察到该模型产生的行为模式与经过训练执行相同任务的猴子的行为模式之间存在惊人的相似性,同时该模型的隐藏单元与顶内沟外侧区(LIP)的神经元之间也存在相似性。在本报告中,我们描述了该模型与单神经元生理学之间的相似性,以说明神经网络作为理解大脑执行的特定计算的工具的有用性。

相似文献

1
Spatial constancy and the brain: insights from neural networks.
Philos Trans R Soc Lond B Biol Sci. 2007 Mar 29;362(1479):375-82. doi: 10.1098/rstb.2006.1965.
2
A neural network model of flexible spatial updating.
J Neurophysiol. 2004 Apr;91(4):1608-19. doi: 10.1152/jn.00277.2003. Epub 2003 Dec 10.
3
Corollary discharge and spatial updating: when the brain is split, is space still unified?
Prog Brain Res. 2005;149:187-205. doi: 10.1016/S0079-6123(05)49014-7.
6
Gaze-centered updating of remembered visual space during active whole-body translations.
J Neurophysiol. 2007 Feb;97(2):1209-20. doi: 10.1152/jn.00882.2006. Epub 2006 Nov 29.
8
Causal inference for spatial constancy across whole body motion.
J Neurophysiol. 2019 Jan 1;121(1):269-284. doi: 10.1152/jn.00473.2018. Epub 2018 Nov 21.
9
Path integration of head direction: updating a packet of neural activity at the correct speed using neuronal time constants.
Biol Cybern. 2010 Jul;103(1):21-41. doi: 10.1007/s00422-009-0355-0. Epub 2010 May 26.
10
Self-organizing continuous attractor network models of hippocampal spatial view cells.
Neurobiol Learn Mem. 2005 Jan;83(1):79-92. doi: 10.1016/j.nlm.2004.08.003.

引用本文的文献

1
Robust Coding of Eye Position in Posterior Parietal Cortex despite Context-Dependent Tuning.
J Neurosci. 2022 May 18;42(20):4116-4130. doi: 10.1523/JNEUROSCI.0674-21.2022. Epub 2022 Apr 11.
2
Neural Network Evidence for the Coupling of Presaccadic Visual Remapping to Predictive Eye Position Updating.
Front Comput Neurosci. 2016 Jun 2;10:52. doi: 10.3389/fncom.2016.00052. eCollection 2016.
3
A State Space Model for Spatial Updating of Remembered Visual Targets during Eye Movements.
Front Syst Neurosci. 2016 May 12;10:39. doi: 10.3389/fnsys.2016.00039. eCollection 2016.
4
A vestibular sensation: probabilistic approaches to spatial perception.
Neuron. 2009 Nov 25;64(4):448-61. doi: 10.1016/j.neuron.2009.11.010.
5
Spatial updating and the maintenance of visual constancy.
Neuroscience. 2008 Oct 28;156(4):801-18. doi: 10.1016/j.neuroscience.2008.07.079. Epub 2008 Aug 22.
6
Introduction. The use of artificial neural networks to study perception in animals.
Philos Trans R Soc Lond B Biol Sci. 2007 Mar 29;362(1479):337-8. doi: 10.1098/rstb.2006.1961.

本文引用的文献

1
Frames of reference for saccadic command tested by saccade collision in the supplementary eye field.
J Neurophysiol. 2006 Jan;95(1):159-70. doi: 10.1152/jn.00268.2005. Epub 2005 Sep 14.
2
Effects of electrical microstimulation in monkey frontal eye field on saccades to remembered targets.
Vision Res. 2005 Dec;45(27):3414-29. doi: 10.1016/j.visres.2005.03.014.
3
Frames of reference for eye-head gaze commands in primate supplementary eye fields.
Neuron. 2004 Dec 16;44(6):1057-66. doi: 10.1016/j.neuron.2004.12.004.
4
Distributed population mechanism for the 3-D oculomotor reference frame transformation.
J Neurophysiol. 2005 Mar;93(3):1742-61. doi: 10.1152/jn.00306.2004. Epub 2004 Nov 10.
5
A neural network model of flexible spatial updating.
J Neurophysiol. 2004 Apr;91(4):1608-19. doi: 10.1152/jn.00277.2003. Epub 2003 Dec 10.
6
Effects of gaze shifts on maintenance of spatial memory in macaque frontal eye field.
J Neurosci. 2003 Jul 2;23(13):5446-54. doi: 10.1523/JNEUROSCI.23-13-05446.2003.
7
8
Brain representation of object-centered space in monkeys and humans.
Annu Rev Neurosci. 2003;26:331-54. doi: 10.1146/annurev.neuro.26.041002.131405. Epub 2003 Feb 26.
9
A pathway in primate brain for internal monitoring of movements.
Science. 2002 May 24;296(5572):1480-2. doi: 10.1126/science.1069590.
10
Memory activity of LIP neurons for sequential eye movements simulated with neural networks.
J Neurophysiol. 2000 Aug;84(2):651-65. doi: 10.1152/jn.2000.84.2.651.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验