Caballero Antonio, Lloveras Vega, Curiel David, Tárraga Alberto, Espinosa Arturo, García Rafaela, Vidal-Gancedo José, Rovira Concepció, Wurst Klaus, Molina Pedro, Veciana Jaume
Departamento de Química OrgAnica, Facultad de Química, Campus de Espinardo, Universidad de Murcia, E-30100 Murcia, Spain.
Inorg Chem. 2007 Feb 5;46(3):825-38. doi: 10.1021/ic061803b.
The synthesis, optical and electrochemical properties, and X-ray characterization of two thiazole derivatives capped by ferrocenyl groups (5 and 7) and their model compounds with one ferrocenyl, either at 2 or 5 position of the mono- or bis-thiazolyl rings (3, 9, 11, and 14), are presented. Bisferrocenyl thiazole 5 forms the mixed-valence species 5*+ by partial oxidation which, interestingly, shows an intramolecular electron-transfer phenomenon. Moreover, the reported heteroaromatic compounds show selective ion-sensing properties. Thus, ferrocenylthiazoles linked across the 5 position of the heteroaromatic ring are selective chemosensors for Hg2+ and Pb2+ metal ions; 5-ferrocenylthiazole 3 operates through two channels, optical and redox, for Hg2+ and only optical for Pb2+, whereas 1,1'-bis(thiazolyl)ferrocene 14 is only an optical sensor for both metal ions. Moreover, complex 3 behaves as an electrochemically induced switchable chemosensor because of the low metal-ion affinity of the oxidized 3*+ species. On the other hand, ferrocenylthiazole 9, in which the heterocyclic ring and the ferrocene group are linked across the 2 position, is a selective redox sensor for Hg2+ metal ions, and it responds optically, as does bis(thiazolyl)ferrocene 11, to a narrow range of cations (Zn2+, Cd2+, Hg2+, Ni2+, and Pb2+). Finally, bis(ferrocenyl)thiazole 5 is a dual optical and redox sensor for Zn2+, Cd2+, Hg2+, Ni2+, and Pb2+, whereas bis(ferrocenyl) compound 7, bearing a bis(thiazole) unit as a bridge, is only a chromogenic sensor for Zn2+, Cd2+, Hg2+, Ni2+, and Pb2+. The experimental data and conclusions about both the electronic and ion-sensing properties are supported by DFT calculations which show, in addition, an unprecedented intramolecular electron-transfer reorganization after the first one-electron oxidation of compound 5.
本文介绍了两种由二茂铁基封端的噻唑衍生物(5和7)及其在单噻唑基或双噻唑基环的2位或5位带有一个二茂铁基的模型化合物(3、9、11和14)的合成、光学和电化学性质以及X射线表征。双二茂铁基噻唑5通过部分氧化形成混合价态物种5*+,有趣的是,它表现出分子内电子转移现象。此外,所报道的杂环芳烃化合物具有选择性离子传感特性。因此,连接在杂芳环5位的二茂铁基噻唑是Hg2+和Pb2+金属离子的选择性化学传感器;5-二茂铁基噻唑3通过光学和氧化还原两个通道检测Hg2+,对Pb2+仅通过光学通道检测,而1,1'-双(噻唑基)二茂铁14对这两种金属离子仅为光学传感器。此外,配合物3由于氧化态3*+物种对金属离子的亲和力低,表现为电化学诱导的可切换化学传感器。另一方面,二茂铁基噻唑9中杂环和二茂铁基团通过2位相连,是Hg2+金属离子的选择性氧化还原传感器,并且与双(噻唑基)二茂铁11一样,对窄范围的阳离子(Zn2+、Cd2+、Hg2+、Ni2+和Pb2+)有光学响应。最后,双(二茂铁基)噻唑5是Zn2+、Cd2+、Hg2+、Ni2+和Pb2+的双光学和氧化还原传感器,而带有双(噻唑)单元作为桥连的双(二茂铁基)化合物7仅是Zn2+、Cd2+、Hg2+、Ni2+和Pb2+的显色传感器。关于电子和离子传感性质的实验数据和结论得到了DFT计算的支持,DFT计算还表明,化合物5首次单电子氧化后发生了前所未有的分子内电子转移重组。