Suppr超能文献

一个快速学习型健康系统。

A rapid-learning health system.

作者信息

Etheredge Lynn M

机构信息

Rapid Learning Project, George Washington University, Washington, DC, USA.

出版信息

Health Aff (Millwood). 2007 Mar-Apr;26(2):w107-18. doi: 10.1377/hlthaff.26.2.w107. Epub 2007 Jan 26.

Abstract

Private- and public-sector initiatives, using electronic health record (EHR) databases from millions of people, could rapidly advance the U.S. evidence base for clinical care. Rapid learning could fill major knowledge gaps about health care costs, the benefits and risks of drugs and procedures, geographic variations, environmental health influences, the health of special populations, and personalized medicine. Policymakers could use rapid learning to revitalize value-based competition, redesign Medicare's payments, advance Medicaid into national health care leadership, foster national collaborative research initiatives, and design a national technology assessment system.

摘要

利用来自数百万人的电子健康记录(EHR)数据库,公共部门和私营部门的举措能够迅速推进美国临床护理的证据基础。快速学习可以填补有关医疗保健成本、药物和手术的益处与风险、地域差异、环境卫生影响、特殊人群健康以及个性化医疗等方面的重大知识空白。政策制定者可以利用快速学习来重振基于价值的竞争、重新设计医疗保险的支付方式、推动医疗补助计划在国家医疗保健领域发挥引领作用、促进全国性合作研究计划,并设计一个国家技术评估系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验