Duncan Jennifer G, Fong Juliet L, Medeiros Denis M, Finck Brian N, Kelly Daniel P
Center for Cardiovascular Research, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA.
Circulation. 2007 Feb 20;115(7):909-17. doi: 10.1161/CIRCULATIONAHA.106.662296. Epub 2007 Jan 29.
Obesity and diabetes mellitus are complex metabolic problems of pandemic proportion, contributing to significant cardiovascular mortality. Recent studies have shown altered mitochondrial function in the hearts of diabetic animals. We hypothesized that regulatory events involved in the control of mitochondrial function are activated in the prediabetic, insulin-resistant stage.
Morphometric analyses demonstrated that cardiac myocyte mitochondrial volume density was increased in insulin-resistant uncoupling protein-diphtheria toxin A (UCP-DTA) transgenic mice, a murine model of metabolic syndrome, compared with littermate controls. Mitochondrial DNA content and expression of genes involved in multiple mitochondrial pathways were also increased in insulin-resistant UCP-DTA hearts. The nuclear receptor, peroxisome proliferator-activated receptor-alpha (PPARalpha), is known to activate metabolic genes in the diabetic heart. Therefore, we evaluated the role of PPARalpha in the observed mitochondrial biogenesis response in the insulin-resistant heart. Insulin-resistant UCP-DTA mice crossed into a PPARalpha-null background did not exhibit evidence of mitochondrial biogenesis or induction of mitochondrial gene expression. Conversely, transgenic mice with cardiac-specific overexpression of PPARalpha exhibited signatures of cardiac mitochondrial biogenesis. A screen for candidate mediators of the PPARalpha-driven mitochondrial biogenic response revealed that expression of PPARgamma coactivator-1alpha (PGC-1alpha), a known regulator of mitochondrial biogenesis, was activated in wild-type UCP-DTA mice but not in PPARalpha-deficient UCP-DTA mice.
These results demonstrate that mitochondrial biogenesis occurs early in the development of diabetic cardiac dysfunction through a transcriptional regulatory circuit that involves activation of PGC-1alpha gene expression by the fatty acid-activated nuclear receptor PPARalpha.
肥胖和糖尿病是具有大流行规模的复杂代谢问题,导致显著的心血管死亡率。最近的研究表明糖尿病动物心脏中的线粒体功能发生了改变。我们假设参与线粒体功能控制的调节事件在糖尿病前期胰岛素抵抗阶段被激活。
形态计量学分析表明,与同窝对照相比,胰岛素抵抗解偶联蛋白-白喉毒素A(UCP-DTA)转基因小鼠(一种代谢综合征小鼠模型)的心肌细胞线粒体体积密度增加。胰岛素抵抗的UCP-DTA心脏中线粒体DNA含量以及参与多个线粒体途径的基因表达也增加。核受体过氧化物酶体增殖物激活受体α(PPARα)已知可激活糖尿病心脏中的代谢基因。因此,我们评估了PPARα在胰岛素抵抗心脏中观察到的线粒体生物发生反应中的作用。与PPARα基因敲除背景杂交的胰岛素抵抗UCP-DTA小鼠未表现出线粒体生物发生或线粒体基因表达诱导的证据。相反,心脏特异性过表达PPARα的转基因小鼠表现出心脏线粒体生物发生的特征。对PPARα驱动的线粒体生物发生反应的候选介质进行筛选发现,线粒体生物发生的已知调节因子PPARγ共激活因子-1α(PGC-1α)的表达在野生型UCP-DTA小鼠中被激活,但在PPARα缺陷的UCP-DTA小鼠中未被激活。
这些结果表明,糖尿病性心脏功能障碍发展早期通过转录调节回路发生线粒体生物发生,该回路涉及脂肪酸激活的核受体PPARα激活PGC-1α基因表达。