Tan Wei, Vinegoni Claudio, Norman James J, Desai Tejal A, Boppart Stephen A
Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinoisat Urbana-Champaign, Illinois 61801, USA.
Microsc Res Tech. 2007 Apr;70(4):361-71. doi: 10.1002/jemt.20420.
The cellular response to environmental cues is complex, involving both structural and functional changes within the cell. Our understanding of this response is facilitated by microscopy techniques, but has been limited by our ability to image cell structure and function deep in highly-scattering tissues or 3D constructs. A novel multimodal microscopy technique that combines coherent and incoherent imaging for simultaneous visualization of structural and functional properties of cells and engineered tissues is demonstrated. This microscopic technique allows for the simultaneous acquisition of optical coherence microscopy and multiphoton microscopy data with particular emphasis for applications in cell biology and tissue engineering. The capability of this technique is shown using representative 3D cell and tissue engineering cultures consisting of primary fibroblasts from transgenic green fluorescent protein (GFP) mice and GFP-vinculin transfected fibroblasts. Imaging is performed following static and dynamic mechanically-stimulating culture conditions. The microscopy technique presented here reveals unique complementary data on the structure and function of cells and their adhesions and interactions with the surrounding microenvironment.
细胞对环境信号的反应是复杂的,涉及细胞内的结构和功能变化。显微镜技术有助于我们对这种反应的理解,但由于我们在高散射组织或三维构建体中对细胞结构和功能进行深度成像的能力有限,其理解受到了限制。本文展示了一种新型的多模态显微镜技术,该技术结合了相干成像和非相干成像,可同时可视化细胞和工程组织的结构和功能特性。这种显微技术能够同时采集光学相干显微镜和多光子显微镜数据,特别适用于细胞生物学和组织工程领域的应用。使用由转基因绿色荧光蛋白(GFP)小鼠的原代成纤维细胞和GFP-纽蛋白转染的成纤维细胞组成的代表性三维细胞和组织工程培养物展示了该技术的能力。在静态和动态机械刺激培养条件下进行成像。本文介绍的显微镜技术揭示了关于细胞的结构和功能及其与周围微环境的粘附和相互作用的独特互补数据。