Suppr超能文献

用于工程化和天然皮肤的结构和功能成像的集成多模态光学显微镜。

Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin.

机构信息

Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

J Biophotonics. 2012 May;5(5-6):437-48. doi: 10.1002/jbio.201200003. Epub 2012 Feb 27.

Abstract

An integrated multimodal optical microscope is demonstrated for high-resolution, structural and functional imaging of engineered and natural skin. This microscope incorporates multiple imaging modalities including optical coherence (OCM), multi-photon (MPM), and fluorescence lifetime imaging microscopy (FLIM), enabling simultaneous visualization of multiple contrast sources and mechanisms from cells and tissues. Spatially co-registered OCM/MPM/FLIM images of multi-layered skin tissues are obtained, which are formed based on complementary information provided by different modalities, i.e., scattering information from OCM, molecular information from MPM, and functional cellular metabolism states from FLIM. Cellular structures in both the dermis and epidermis, especially different morphological and physiological states of keratinocytes from different epidermal layers, are revealed by mutually-validating images. In vivo imaging of human skin is also investigated, which demonstrates the potential of multimodal microscopy for in vivo investigation during engineered skin engraftment. This integrated imaging technique and microscope show the potential for investigating cellular dynamics in developing engineered skin and following in vivo grafting, which will help refine the control and culturing conditions necessary to obtain more robust and physiologically-relevant engineered skin substitutes.

摘要

一种集成的多模态光学显微镜被展示用于对工程化和天然皮肤进行高分辨率、结构和功能成像。该显微镜结合了多种成像模式,包括光学相干断层扫描(OCT)、多光子(MPM)和荧光寿命成像显微镜(FLIM),能够同时可视化来自细胞和组织的多个对比源和机制。获得了多层皮肤组织的空间共定位的 OCT/MPM/FLIM 图像,这些图像是基于不同模式提供的互补信息形成的,即 OCT 提供的散射信息、MPM 提供的分子信息以及 FLIM 提供的功能细胞代谢状态信息。真皮和表皮中的细胞结构,特别是来自不同表皮层的角朊细胞的不同形态和生理状态,都通过相互验证的图像得到揭示。还研究了人体皮肤的体内成像,这表明多模态显微镜在工程化皮肤移植过程中的体内研究中的潜力。这种集成的成像技术和显微镜显示了用于研究发育中的工程化皮肤和体内移植后的细胞动力学的潜力,这将有助于完善获得更健壮和更具生理相关性的工程化皮肤替代物所需的控制和培养条件。

相似文献

1
Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin.
J Biophotonics. 2012 May;5(5-6):437-48. doi: 10.1002/jbio.201200003. Epub 2012 Feb 27.
2
Longitudinal label-free tracking of cell death dynamics in living engineered human skin tissue with a multimodal microscope.
Biomed Opt Express. 2014 Sep 19;5(10):3699-716. doi: 10.1364/BOE.5.003699. eCollection 2014 Oct 1.
3
Multimodal optical imaging with multiphoton microscopy and optical coherence tomography.
J Biophotonics. 2012 May;5(5-6):396-403. doi: 10.1002/jbio.201100138. Epub 2012 Mar 28.
4
Model for human skin reconstructed in vitro composed of associated dermis and epidermis.
Sao Paulo Med J. 2006 Mar 2;124(2):71-6. doi: 10.1590/s1516-31802006000200005.
5
Multimodal Skin Imaging with Integrated Optical Coherence and Multiphoton Microscopy.
IEEE J Sel Top Quantum Electron. 2012 Jun 27;18(4):1280-1286. doi: 10.1109/JSTQE.2011.2166377.
6
Fibrotic remodeling of tissue-engineered skin with deep dermal fibroblasts is reduced by keratinocytes.
Tissue Eng Part A. 2014 Feb;20(3-4):716-27. doi: 10.1089/ten.TEA.2013.0434. Epub 2013 Nov 9.
7
Mixture of fibroblasts and adipose tissue-derived stem cells can improve epidermal morphogenesis of tissue-engineered skin.
Cells Tissues Organs. 2012;195(3):197-206. doi: 10.1159/000324921. Epub 2011 Apr 15.
8
The expression pattern of keratin 24 in tissue-engineered dermo-epidermal human skin substitutes in an in vivo model.
Pediatr Surg Int. 2018 Feb;34(2):237-244. doi: 10.1007/s00383-017-4198-9. Epub 2017 Oct 16.

引用本文的文献

3
Enhanced medical diagnosis for dOCTors: a perspective of optical coherence tomography.
J Biomed Opt. 2021 Oct;26(10). doi: 10.1117/1.JBO.26.10.100601.
4
Real-time pixelwise phasor analysis for video-rate two-photon fluorescence lifetime imaging microscopy.
Biomed Opt Express. 2021 Jun 11;12(7):4003-4019. doi: 10.1364/BOE.424533. eCollection 2021 Jul 1.
6
Multimodal x-ray and electron microscopy of the Allende meteorite.
Sci Adv. 2019 Sep 20;5(9):eaax3009. doi: 10.1126/sciadv.aax3009. eCollection 2019 Sep.
7
Digital staining through the application of deep neural networks to multi-modal multi-photon microscopy.
Biomed Opt Express. 2019 Feb 19;10(3):1339-1350. doi: 10.1364/BOE.10.001339. eCollection 2019 Mar 1.
9
In Vivo Assessment of Engineered Skin Cell Delivery with Multimodal Optical Microscopy.
Tissue Eng Part C Methods. 2017 Jul;23(7):434-442. doi: 10.1089/ten.TEC.2017.0185.
10
A quantitative framework for the analysis of multimodal optical microscopy images.
Quant Imaging Med Surg. 2017 Feb;7(1):24-37. doi: 10.21037/qims.2017.02.07.

本文引用的文献

1
Multimodal Skin Imaging with Integrated Optical Coherence and Multiphoton Microscopy.
IEEE J Sel Top Quantum Electron. 2012 Jun 27;18(4):1280-1286. doi: 10.1109/JSTQE.2011.2166377.
3
In vivo evaluation of human skin anisotropy by polarization-sensitive optical coherence tomography.
Biomed Opt Express. 2011 Sep 1;2(9):2623-31. doi: 10.1364/BOE.2.002623. Epub 2011 Aug 16.
4
6
Quantitative evaluation of healthy epidermis by means of multiphoton microscopy and fluorescence lifetime imaging microscopy.
Skin Res Technol. 2011 Aug;17(3):295-303. doi: 10.1111/j.1600-0846.2011.00496.x. Epub 2011 Apr 25.
7
In vivo three-dimensional optical coherence elastography.
Opt Express. 2011 Mar 28;19(7):6623-34. doi: 10.1364/OE.19.006623.
9
An overview of methods for the in vivo evaluation of tissue-engineered skin constructs.
Tissue Eng Part B Rev. 2011 Feb;17(1):33-55. doi: 10.1089/ten.TEB.2010.0473. Epub 2010 Dec 19.
10
Correction of coherence gate curvature in high numerical aperture optical coherence imaging.
Opt Lett. 2010 Sep 15;35(18):3120-2. doi: 10.1364/OL.35.003120.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验