Suppr超能文献

使用介观荧光层析成像技术在 3D 支架中对用于骨组织工程的干细胞进行分布、生长、迁移和分化的成像。

Imaging stem cell distribution, growth, migration, and differentiation in 3-D scaffolds for bone tissue engineering using mesoscopic fluorescence tomography.

机构信息

Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.

School of Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland.

出版信息

Biotechnol Bioeng. 2018 Jan;115(1):257-265. doi: 10.1002/bit.26452.

Abstract

Regenerative medicine has emerged as an important discipline that aims to repair injury or replace damaged tissues or organs by introducing living cells or functioning tissues. Successful regenerative medicine strategies will likely depend upon a simultaneous optimization strategy for the design of biomaterials, cell-seeding methods, cell-biomaterial interactions, and molecular signaling within the engineered tissues. It remains a challenge to image three-dimensional (3-D) structures and functions of the cell-seeded scaffold in mesoscopic scale (>2 ∼ 3 mm). In this study, we utilized angled fluorescence laminar optical tomography (aFLOT), which allows depth-resolved molecular characterization of engineered tissues in 3-D to investigate cell viability, migration, and bone mineralization within bone tissue engineering scaffolds in situ.

摘要

再生医学已经成为一门重要的学科,旨在通过引入活细胞或功能性组织来修复损伤或替代受损的组织或器官。成功的再生医学策略可能取决于同时优化生物材料设计、细胞接种方法、细胞-生物材料相互作用以及工程组织内的分子信号的策略。在介观尺度(>2∼3mm)下对细胞接种支架的三维(3-D)结构和功能进行成像仍然是一个挑战。在这项研究中,我们利用了倾斜荧光层状光学层析成像(aFLOT),该技术允许对三维工程组织进行深度分辨的分子特征分析,从而原位研究骨组织工程支架内的细胞活力、迁移和骨矿化。

相似文献

2
Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues.
Ann Biomed Eng. 2016 Mar;44(3):667-79. doi: 10.1007/s10439-015-1511-4. Epub 2015 Dec 8.
4
Nano-ceramic composite scaffolds for bioreactor-based bone engineering.
Clin Orthop Relat Res. 2013 Aug;471(8):2422-33. doi: 10.1007/s11999-013-2859-0.
5
Spheroids of stem cells as endochondral templates for improved bone engineering.
Front Biosci (Landmark Ed). 2018 Jun 1;23(10):1969-1986. doi: 10.2741/4683.
6
Oxygen mapping: Probing a novel seeding strategy for bone tissue engineering.
Biotechnol Bioeng. 2017 Apr;114(4):894-902. doi: 10.1002/bit.26202. Epub 2016 Nov 17.
7
Reprogramming of mesenchymal stem cells derived from iPSCs seeded on biofunctionalized calcium phosphate scaffold for bone engineering.
Biomaterials. 2013 Oct;34(32):7862-72. doi: 10.1016/j.biomaterials.2013.07.029. Epub 2013 Jul 24.
9
Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine.
Semin Cell Dev Biol. 2009 Aug;20(6):646-55. doi: 10.1016/j.semcdb.2009.03.017.
10
Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering.
Expert Rev Med Devices. 2008 Nov;5(6):719-28. doi: 10.1586/17434440.5.6.719.

引用本文的文献

2
Advances in Growth Factor Delivery for Bone Tissue Engineering.
Int J Mol Sci. 2021 Jan 18;22(2):903. doi: 10.3390/ijms22020903.
3
3D printing in cell culture systems and medical applications.
Appl Phys Rev. 2018 Dec;5(4):041109. doi: 10.1063/1.5046087.
4
Cell Bioprinting: The 3D-Bioplotter™ Case.
Materials (Basel). 2019 Dec 2;12(23):4005. doi: 10.3390/ma12234005.

本文引用的文献

1
Development of a 3D Printed, Bioengineered Placenta Model to Evaluate the Role of Trophoblast Migration in Preeclampsia.
ACS Biomater Sci Eng. 2016 Oct 10;2(10):1817-1826. doi: 10.1021/acsbiomaterials.6b00031. Epub 2016 May 6.
2
High-dynamic-range fluorescence laminar optical tomography (HDR-FLOT).
Biomed Opt Express. 2017 Mar 9;8(4):2124-2137. doi: 10.1364/BOE.8.002124. eCollection 2017 Apr 1.
3
Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography.
Biomed Opt Express. 2016 Nov 21;7(12):5218-5232. doi: 10.1364/BOE.7.005218. eCollection 2016 Dec 1.
4
Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities.
Neurophotonics. 2017 Jan;4(1):011009. doi: 10.1117/1.NPh.4.1.011009. Epub 2016 Nov 14.
5
In Vivo Mesoscopic Voltage-Sensitive Dye Imaging of Brain Activation.
Sci Rep. 2016 Apr 29;6:25269. doi: 10.1038/srep25269.
6
Analysis of migration rate and chemotaxis of human adipose-derived mesenchymal stem cells in response to LPS and LTA in vitro.
Exp Cell Res. 2016 Mar 15;342(2):95-103. doi: 10.1016/j.yexcr.2016.03.016. Epub 2016 Mar 18.
7
Dynamic Bioreactor Culture of High Volume Engineered Bone Tissue.
Tissue Eng Part A. 2016 Feb;22(3-4):263-71. doi: 10.1089/ten.TEA.2015.0395. Epub 2016 Jan 11.
8
Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues.
Ann Biomed Eng. 2016 Mar;44(3):667-79. doi: 10.1007/s10439-015-1511-4. Epub 2015 Dec 8.
9
Open-source three-dimensional printing of biodegradable polymer scaffolds for tissue engineering.
J Biomed Mater Res A. 2014 Dec;102(12):4326-35. doi: 10.1002/jbm.a.35108.
10
Mesoscopic fluorescence tomography of a photosensitizer (HPPH) 3D biodistribution in skin cancer.
Acad Radiol. 2014 Feb;21(2):271-80. doi: 10.1016/j.acra.2013.11.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验