Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.
School of Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland.
Biotechnol Bioeng. 2018 Jan;115(1):257-265. doi: 10.1002/bit.26452.
Regenerative medicine has emerged as an important discipline that aims to repair injury or replace damaged tissues or organs by introducing living cells or functioning tissues. Successful regenerative medicine strategies will likely depend upon a simultaneous optimization strategy for the design of biomaterials, cell-seeding methods, cell-biomaterial interactions, and molecular signaling within the engineered tissues. It remains a challenge to image three-dimensional (3-D) structures and functions of the cell-seeded scaffold in mesoscopic scale (>2 ∼ 3 mm). In this study, we utilized angled fluorescence laminar optical tomography (aFLOT), which allows depth-resolved molecular characterization of engineered tissues in 3-D to investigate cell viability, migration, and bone mineralization within bone tissue engineering scaffolds in situ.
再生医学已经成为一门重要的学科,旨在通过引入活细胞或功能性组织来修复损伤或替代受损的组织或器官。成功的再生医学策略可能取决于同时优化生物材料设计、细胞接种方法、细胞-生物材料相互作用以及工程组织内的分子信号的策略。在介观尺度(>2∼3mm)下对细胞接种支架的三维(3-D)结构和功能进行成像仍然是一个挑战。在这项研究中,我们利用了倾斜荧光层状光学层析成像(aFLOT),该技术允许对三维工程组织进行深度分辨的分子特征分析,从而原位研究骨组织工程支架内的细胞活力、迁移和骨矿化。