Styczynski Mark P, Moxley Joel F, Tong Lily V, Walther Jason L, Jensen Kyle L, Stephanopoulos Gregory N
Department of Chemical Engineering, Massachusetts Institute of Technology, Room 56-469c, Cambridge, Massachusetts 02139, USA.
Anal Chem. 2007 Feb 1;79(3):966-73. doi: 10.1021/ac0614846.
Analysis of metabolomic profiling data from gas chromatography-mass spectrometry (GC/MS) measurements usually relies upon reference libraries of metabolite mass spectra to structurally identify and track metabolites. In general, techniques to enumerate and track unidentified metabolites are nonsystematic and require manual curation. We present a method and software implementation, freely available at http://spectconnect.mit.edu, that can systematically detect components that are conserved across samples without the need for a reference library or manual curation. We validate this approach by correctly identifying the components in a known mixture and the discriminating components in a spiked mixture. Finally, we demonstrate an application of this approach with a brief analysis of the Escherichia coli metabolome. By systematically cataloguing conserved metabolite peaks prior to data analysis methods, our approach broadens the scope of metabolomics and facilitates biomarker discovery.
气相色谱 - 质谱联用(GC/MS)测量所得代谢组学分析数据的分析通常依赖于代谢物质谱参考库来进行结构鉴定和追踪代谢物。一般来说,枚举和追踪未鉴定代谢物的技术缺乏系统性,需要人工整理。我们提出了一种方法及软件实现,可在http://spectconnect.mit.edu免费获取,该方法能够系统地检测样本间保守的成分,无需参考库或人工整理。我们通过正确识别已知混合物中的成分以及加标混合物中的鉴别成分来验证此方法。最后,我们通过对大肠杆菌代谢组的简要分析展示了该方法的应用。通过在数据分析方法之前系统地编目保守的代谢物峰,我们的方法拓宽了代谢组学的范围并促进了生物标志物的发现。