Chan Eric Chun Yong, Koh Poh Koon, Mal Mainak, Cheah Peh Yean, Eu Kong Weng, Backshall Alexandra, Cavill Rachel, Nicholson Jeremy K, Keun Hector C
Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
J Proteome Res. 2009 Jan;8(1):352-61. doi: 10.1021/pr8006232.
Current clinical strategy for staging and prognostication of colorectal cancer (CRC) relies mainly upon the TNM or Duke system. This clinicopathological stage is a crude prognostic guide because it reflects in part the delay in diagnosis in the case of an advanced cancer and gives little insight into the biological characteristics of the tumor. We hypothesized that global metabolic profiling (metabonomics/metabolomics) of colon mucosae would define metabolic signatures that not only discriminate malignant from normal mucosae, but also could distinguish the anatomical and clinicopathological characteristics of CRC. We applied both high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) and gas chromatography mass spectrometry (GC/MS) to analyze metabolites in biopsied colorectal tumors and their matched normal mucosae obtained from 31 CRC patients. Orthogonal partial least-squares discriminant analysis (OPLS-DA) models generated from metabolic profiles obtained by both analytical approaches could robustly discriminate normal from malignant samples (Q(2) > 0.50, Receiver Operator Characteristic (ROC) AUC >0.95, using 7-fold cross validation). A total of 31 marker metabolites were identified using the two analytical platforms. The majority of these metabolites were associated with expected metabolic perturbations in CRC including elevated tissue hypoxia, glycolysis, nucleotide biosynthesis, lipid metabolism, inflammation and steroid metabolism. OPLS-DA models showed that the metabolite profiles obtained via HR-MAS NMR could further differentiate colon from rectal cancers (Q(2)> 0.60, ROC AUC = 1.00, using 7-fold cross validation). These data suggest that metabolic profiling of CRC mucosae could provide new phenotypic biomarkers for CRC management.
目前,结直肠癌(CRC)分期和预后的临床策略主要依赖于TNM或杜克系统。这种临床病理分期是一种粗略的预后指导,因为它部分反映了晚期癌症诊断的延迟,并且对肿瘤的生物学特征了解甚少。我们假设结肠黏膜的整体代谢谱分析(代谢组学)将定义代谢特征,这些特征不仅可以区分恶性黏膜和正常黏膜,还可以区分CRC的解剖学和临床病理特征。我们应用高分辨率魔角旋转核磁共振(HR-MAS NMR)和气相色谱-质谱联用(GC/MS)分析了31例CRC患者活检的结直肠肿瘤及其匹配的正常黏膜中的代谢物。通过两种分析方法获得的代谢谱生成的正交偏最小二乘判别分析(OPLS-DA)模型能够可靠地区分正常样本和恶性样本(Q(2)> 0.50,受试者工作特征曲线(ROC)AUC>0.95,采用7倍交叉验证)。使用这两个分析平台共鉴定出31种标志物代谢物。这些代谢物中的大多数与CRC中预期的代谢紊乱有关,包括组织缺氧增加、糖酵解、核苷酸生物合成、脂质代谢、炎症和类固醇代谢。OPLS-DA模型表明,通过HR-MAS NMR获得的代谢物谱可以进一步区分结肠癌和直肠癌(Q(2)> 0.60,ROC AUC = 1.00,采用7倍交叉验证)。这些数据表明,CRC黏膜的代谢谱分析可为CRC的管理提供新的表型生物标志物。