Büntgen Ulf, Frank David C, Kaczka Ryszard J, Verstege Anne, Zwijacz-Kozica Tomasz, Esper Jan
Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland.
Tree Physiol. 2007 May;27(5):689-702. doi: 10.1093/treephys/27.5.689.
We analyzed growth responses to climate of 24 tree-ring width and four maximum latewood density chronologies from the greater Tatra region in Poland and Slovakia. This network comprises 1183 ring-width and 153 density measurement series from four conifer species (Picea abies (L.) Karst., Larix decidua Mill., Abies alba (L.) Karst., and Pinus mugo (L.)) between 800 and 1550 m a.s.l. Individual spline detrending was used to retain annual to multi-decadal scale climate information in the data. Twentieth century temperature and precipitation data from 16 grid-boxes covering the 48-50 degrees N and 19-21 degrees E region were used for comparison. The network was analyzed to assess growth responses to climate as a function of species, elevation, parameter, frequency and site ecology. Twenty ring-width chronologies significantly correlated (P<0.05) with June-July temperatures, whereas the latewood density chronologies were correlated with the April-September temperatures. Climatic effects of the previous-year summer generally did not significantly influence ring formation, whereas site elevation and frequency of growth variations (i.e., inter-annual and decadal) were significant variables in explaining growth response to climate. Response to precipitation increased with decreasing elevation. Correlations between summer temperatures and annual growth rates were lower for Larix decidua than for Picea abies. Principal component analysis identified five dominant eigenvectors that express somewhat contrasting climatic signals. The first principal component contained highest loadings from 11 Picea abies ring-width chronologies and one Pinus mugo ring-width chronology and explained 42% of the network's variance. The mean of these 12 high-elevation chronologies was significantly correlated at 0.62 with June-July temperatures, whereas the mean of three latewood density chronologies, which loaded most strongly on the fourth principal component, significantly correlated at 0.69 with April-September temperatures (P<0.001 over the 1901-2002 period in both cases). These groupings allow for a robust estimation of June-July (1661-2004) and April-September (1709-2004) temperatures, respectively. Comparison with reconstructions from the Alps and Central Europe supports the general rule of the dominant influence of growing season temperature on high-elevation forest growth.
我们分析了来自波兰和斯洛伐克大塔特拉地区的24个树轮宽度和4个最大晚材密度年表对气候的生长响应。该网络包括海拔800至1550米之间4种针叶树(欧洲云杉(Picea abies (L.) Karst.)、欧洲落叶松(Larix decidua Mill.)、欧洲冷杉(Abies alba (L.) Karst.)和中欧山松(Pinus mugo (L.)))的1183个树轮宽度测量序列和153个密度测量序列。采用样条去趋势法以保留数据中年际至数十年尺度的气候信息。使用了覆盖北纬48 - 50度和东经19 - 21度区域的16个网格点的20世纪温度和降水数据进行比较。对该网络进行分析,以评估作为物种、海拔、参数、频率和立地生态函数的生长对气候的响应。20个树轮宽度年表与6 - 7月温度显著相关(P<0.05),而晚材密度年表与4 - 9月温度相关。前一年夏季的气候效应一般对年轮形成没有显著影响,而立地海拔和生长变化频率(即年际和年代际)是解释生长对气候响应的重要变量。对降水的响应随海拔降低而增加。欧洲落叶松夏季温度与年生长率之间的相关性低于欧洲云杉。主成分分析确定了五个主要特征向量,它们表达了有些不同的气候信号。第一主成分包含来自11个欧洲云杉树轮宽度年表和1个中欧山松树轮宽度年表的最高负荷,解释了该网络42%的方差。这12个高海拔年表的平均值与6 - 7月温度显著相关,相关系数为0.62,而在第四主成分上负荷最强的3个晚材密度年表的平均值与4 - 9月温度显著相关,相关系数为0.69(在1901 - 2002年期间两种情况均P<0.001)。这些分组分别允许对6 - 7月(1661 - 2004年)和4 - 9月(1709 - 2004年)温度进行可靠估计。与阿尔卑斯山和中欧的重建结果比较支持了生长季温度对高海拔森林生长具有主导影响的一般规律。