Cowan Noah J, Fortune Eric S
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
J Neurosci. 2007 Jan 31;27(5):1123-8. doi: 10.1523/JNEUROSCI.4198-06.2007.
How do neural systems process sensory information to control locomotion? The weakly electric knifefish Eigenmannia, an ideal model for studying sensorimotor control, swims to stabilize the sensory image of a sinusoidally moving refuge. Tracking performance is best at stimulus frequencies less than approximately 1 Hz. Kinematic analysis, which is widely used in the study of neural control of movement, predicts commensurately low-pass sensory processing for control. The inclusion of Newtonian mechanics in the analysis of the behavior, however, categorically shifts the prediction: this analysis predicts that sensory processing is high pass. The counterintuitive prediction that a low-pass behavior is controlled by a high-pass neural filter nevertheless matches previously reported but poorly understood high-pass filtering seen in electrosensory afferents and downstream neurons. Furthermore, a model incorporating the high-pass controller matches animal behavior, whereas the model with the low-pass controller does not and is unstable. Because locomotor mechanics are similar in a wide array of animals, these data suggest that such high-pass sensory filters may be a general mechanism used for task-level locomotion control. Furthermore, these data highlight the critical role of mechanical analyses in addition to widely used kinematic analyses in the study of neural control systems.
神经系统如何处理感觉信息以控制运动?弱电刀鱼是研究感觉运动控制的理想模型,它游动以稳定正弦运动避难所的感觉图像。在刺激频率小于约1赫兹时跟踪性能最佳。运动学分析广泛应用于运动神经控制研究,预测控制时相应地有低通感觉处理。然而,在行为分析中纳入牛顿力学后,预测发生了彻底转变:这种分析预测感觉处理是高通的。尽管低通行为由高通神经滤波器控制这一违反直觉的预测与先前报道但理解不足的电感觉传入神经和下游神经元中的高通滤波相匹配。此外,包含高通控制器的模型与动物行为匹配,而具有低通控制器的模型则不匹配且不稳定。由于多种动物的运动力学相似,这些数据表明这种高通感觉滤波器可能是用于任务级运动控制的一般机制。此外,这些数据突出了除广泛使用的运动学分析外,力学分析在神经控制系统研究中的关键作用。