Department of Mechanical Engineering, Pennsylvania State University, University Park, 16802 PA, USA.
Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, 21218 MD, USA.
Integr Comp Biol. 2024 Nov 21;64(5):1390-1407. doi: 10.1093/icb/icae121.
Whether walking, running, slithering, or flying, organisms display a remarkable ability to move through complex and uncertain environments. In particular, animals have evolved to cope with a host of uncertainties-both of internal and external origin-to maintain adequate performance in an ever-changing world. In this review, we present mathematical methods in engineering to highlight emerging principles of robust and adaptive control of organismal locomotion. Specifically, by drawing on the mathematical framework of control theory, we decompose the robust and adaptive hierarchical structure of locomotor control. We show how this decomposition along the robust-adaptive axis provides testable hypotheses to classify behavioral outcomes to perturbations. With a focus on studies in non-human animals, we contextualize recent findings along the robust-adaptive axis by emphasizing two broad classes of behaviors: (1) compensation to appendage loss and (2) image stabilization and fixation. Next, we attempt to map robust and adaptive control of locomotion across some animal groups and existing bio-inspired robots. Finally, we highlight exciting future directions and interdisciplinary collaborations that are needed to unravel principles of robust and adaptive locomotion.
无论是行走、奔跑、滑行还是飞行,生物都展现出一种卓越的能力,可以在复杂和不确定的环境中移动。特别是,动物已经进化出适应一系列不确定性的能力,包括内部和外部来源的不确定性,以在不断变化的世界中保持足够的性能。在这篇综述中,我们介绍了工程学中的数学方法,以突出生物体运动的稳健和自适应控制的新兴原理。具体来说,通过借鉴控制理论的数学框架,我们分解了运动控制的稳健和自适应层次结构。我们展示了沿着稳健-自适应轴的这种分解如何为分类行为结果提供可测试的假设对扰动。我们关注非人类动物的研究,通过强调两种广泛的行为类别来沿着稳健-自适应轴来解释最近的发现:(1)对附肢缺失的补偿和(2)图像稳定和固定。接下来,我们试图在一些动物群体和现有的生物启发机器人中映射运动的稳健和自适应控制。最后,我们强调了需要解开稳健和自适应运动的原理的令人兴奋的未来方向和跨学科合作。