Suppr超能文献

合作递归模块化神经网络在约束优化中的应用综述:模型与应用。

Cooperative recurrent modular neural networks for constrained optimization: a survey of models and applications.

机构信息

Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada,

出版信息

Cogn Neurodyn. 2009 Mar;3(1):47-81. doi: 10.1007/s11571-008-9036-2. Epub 2008 Feb 1.

Abstract

Constrained optimization problems arise in a wide variety of scientific and engineering applications. Since several single recurrent neural networks when applied to solve constrained optimization problems for real-time engineering applications have shown some limitations, cooperative recurrent neural network approaches have been developed to overcome drawbacks of these single recurrent neural networks. This paper surveys in details work on cooperative recurrent neural networks for solving constrained optimization problems and their engineering applications, and points out their standing models from viewpoint of both convergence to the optimal solution and model complexity. We provide examples and comparisons to shown advantages of these models in the given applications.

摘要

约束优化问题在各种科学和工程应用中都会出现。由于一些单个的递归神经网络在应用于实时工程应用的约束优化问题时表现出一些局限性,因此开发了合作递归神经网络方法来克服这些单个递归神经网络的缺点。本文详细调查了用于解决约束优化问题及其工程应用的合作递归神经网络的工作,并从最优解的收敛和模型复杂度的角度指出了它们的现有模型。我们提供了一些例子和比较,以显示这些模型在给定应用中的优势。

相似文献

1
Cooperative recurrent modular neural networks for constrained optimization: a survey of models and applications.
Cogn Neurodyn. 2009 Mar;3(1):47-81. doi: 10.1007/s11571-008-9036-2. Epub 2008 Feb 1.
2
A One-Layer Recurrent Neural Network for Pseudoconvex Optimization Problems With Equality and Inequality Constraints.
IEEE Trans Cybern. 2017 Oct;47(10):3063-3074. doi: 10.1109/TCYB.2016.2567449. Epub 2016 May 24.
3
A novel recurrent neural network for solving nonlinear optimization problems with inequality constraints.
IEEE Trans Neural Netw. 2008 Aug;19(8):1340-53. doi: 10.1109/TNN.2008.2000273.
4
A One-Layer Recurrent Neural Network for Constrained Complex-Variable Convex Optimization.
IEEE Trans Neural Netw Learn Syst. 2018 Mar;29(3):534-544. doi: 10.1109/TNNLS.2016.2635676. Epub 2016 Dec 22.
5
A non-penalty recurrent neural network for solving a class of constrained optimization problems.
Neural Netw. 2016 Jan;73:10-25. doi: 10.1016/j.neunet.2015.09.013. Epub 2015 Oct 27.
6
A collective neurodynamic optimization approach to bound-constrained nonconvex optimization.
Neural Netw. 2014 Jul;55:20-9. doi: 10.1016/j.neunet.2014.03.006. Epub 2014 Mar 28.
7
Solving Multiextremal Problems by Using Recurrent Neural Networks.
IEEE Trans Neural Netw Learn Syst. 2018 May;29(5):1562-1574. doi: 10.1109/TNNLS.2017.2676046. Epub 2017 Mar 16.
8
A one-layer recurrent neural network for constrained nonsmooth invex optimization.
Neural Netw. 2014 Feb;50:79-89. doi: 10.1016/j.neunet.2013.11.007. Epub 2013 Nov 19.

引用本文的文献

2
Event-based exponential synchronization of complex networks.
Cogn Neurodyn. 2016 Oct;10(5):423-36. doi: 10.1007/s11571-016-9391-3. Epub 2016 Jun 6.
4
Exponential synchronization of memristive Cohen-Grossberg neural networks with mixed delays.
Cogn Neurodyn. 2014 Jun;8(3):239-49. doi: 10.1007/s11571-013-9277-6. Epub 2014 Jan 4.

本文引用的文献

2
Image restoration using a modified Hopfield network.
IEEE Trans Image Process. 1992;1(1):49-63. doi: 10.1109/83.128030.
3
A class of robust entropic functionals for image restoration.
IEEE Trans Image Process. 1995;4(6):752-73. doi: 10.1109/83.388078.
4
Second-order neural nets for constrained optimization.
IEEE Trans Neural Netw. 1992;3(6):1021-4. doi: 10.1109/72.165605.
5
Linear and quadratic programming neural network analysis.
IEEE Trans Neural Netw. 1992;3(4):580-94. doi: 10.1109/72.143372.
6
A generalized least absolute deviation method for parameter estimation of autoregressive signals.
IEEE Trans Neural Netw. 2008 Jan;19(1):107-18. doi: 10.1109/TNN.2007.902962.
7
A new neural network for solving linear and quadratic programming problems.
IEEE Trans Neural Netw. 1996;7(6):1544-8. doi: 10.1109/72.548188.
8
Neural network for solving linear programming problems with bounded variables.
IEEE Trans Neural Netw. 1995;6(2):515-9. doi: 10.1109/72.363493.
9
Efficient classification for multiclass problems using modular neural networks.
IEEE Trans Neural Netw. 1995;6(1):117-24. doi: 10.1109/72.363444.
10
A general methodology for designing globally convergent optimization neural networks.
IEEE Trans Neural Netw. 1998;9(6):1331-43. doi: 10.1109/72.728383.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验