Suppr超能文献

连续小波变换在哮鸣音分析中的应用

On applying continuous wavelet transform in wheeze analysis.

作者信息

Taplidou Styliani A, Hadjileontiadis Leontios J, Kitsas Ilias K, Panoulas Konstantinos I, Penzel Thomas, Gross Volker, Panas Stavros M

机构信息

Dept. of Electrical & Computer Engineering, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece.

出版信息

Conf Proc IEEE Eng Med Biol Soc. 2004;2004:3832-5. doi: 10.1109/IEMBS.2004.1404073.

Abstract

The identification of continuous abnormal lung sounds, like wheezes, in the total breathing cycle is of great importance in the diagnosis of obstructive airways pathologies. To this vein, the current work introduces an efficient method for the detection of wheezes, based on the time-scale representation of breath sound recordings. The employed Continuous Wavelet Transform is proven to be a valuable tool at this direction, when combined with scale-dependent thresholding. Analysis of lung sound recordings from 'wheezing' patients shows promising performance in the detection and extraction of wheezes from the background noise and reveals its potentiality for data-volume reduction in long-term wheezing screening, such as in sleep-laboratories.

摘要

在整个呼吸周期中识别持续异常的肺音,如哮鸣音,对于阻塞性气道疾病的诊断非常重要。为此,当前工作介绍了一种基于呼吸音记录的时间尺度表示来检测哮鸣音的有效方法。当与尺度相关的阈值处理相结合时,所采用的连续小波变换被证明是在这个方向上的一个有价值的工具。对 “喘息” 患者的肺音记录分析表明,在从背景噪声中检测和提取哮鸣音方面具有良好的性能,并揭示了其在长期喘息筛查(如在睡眠实验室)中减少数据量的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验