Suppr超能文献

利用计算机化肺音分析提高资源匮乏地区小儿肺炎诊断的特异性:一项观察性研究的方案与方法

Computerised lung sound analysis to improve the specificity of paediatric pneumonia diagnosis in resource-poor settings: protocol and methods for an observational study.

作者信息

Ellington Laura E, Gilman Robert H, Tielsch James M, Steinhoff Mark, Figueroa Dante, Rodriguez Shalim, Caffo Brian, Tracey Brian, Elhilali Mounya, West James, Checkley William

机构信息

Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, Maryland, USA.

出版信息

BMJ Open. 2012 Feb 3;2(1):e000506. doi: 10.1136/bmjopen-2011-000506. Print 2012.

Abstract

INTRODUCTION

WHO case management algorithm for paediatric pneumonia relies solely on symptoms of shortness of breath or cough and tachypnoea for treatment and has poor diagnostic specificity, tends to increase antibiotic resistance. Alternatives, including oxygen saturation measurement, chest ultrasound and chest auscultation, exist but with potential disadvantages. Electronic auscultation has potential for improved detection of paediatric pneumonia but has yet to be standardised. The authors aim to investigate the use of electronic auscultation to improve the specificity of the current WHO algorithm in developing countries.

METHODS

This study is designed to test the hypothesis that pulmonary pathology can be differentiated from normal using computerised lung sound analysis (CLSA). The authors will record lung sounds from 600 children aged ≤5 years, 100 each with consolidative pneumonia, diffuse interstitial pneumonia, asthma, bronchiolitis, upper respiratory infections and normal lungs at a children's hospital in Lima, Peru. The authors will compare CLSA with the WHO algorithm and other detection approaches, including physical exam findings, chest ultrasound and microbiologic testing to construct an improved algorithm for pneumonia diagnosis.

DISCUSSION

This study will develop standardised methods for electronic auscultation and chest ultrasound and compare their utility for detection of pneumonia to standard approaches. Utilising signal processing techniques, the authors aim to characterise lung sounds and through machine learning, develop a classification system to distinguish pathologic sounds. Data will allow a better understanding of the benefits and limitations of novel diagnostic techniques in paediatric pneumonia.

摘要

引言

世界卫生组织(WHO)的小儿肺炎病例管理算法仅依靠呼吸急促、咳嗽和呼吸急促等症状进行治疗,诊断特异性较差,且往往会增加抗生素耐药性。虽然存在其他方法,包括血氧饱和度测量、胸部超声和胸部听诊,但都有潜在的缺点。电子听诊有提高小儿肺炎检测率的潜力,但尚未标准化。作者旨在研究在发展中国家使用电子听诊来提高当前WHO算法的特异性。

方法

本研究旨在检验使用计算机化肺音分析(CLSA)可将肺部病理与正常情况区分开来的假设。作者将在秘鲁利马的一家儿童医院记录600名5岁及以下儿童的肺音,其中100名分别患有实变肺炎、弥漫性间质性肺炎、哮喘、细支气管炎、上呼吸道感染以及肺部正常。作者将CLSA与WHO算法以及其他检测方法进行比较,包括体格检查结果、胸部超声和微生物检测,以构建一种改进的肺炎诊断算法。

讨论

本研究将开发电子听诊和胸部超声的标准化方法,并将它们在肺炎检测方面的效用与标准方法进行比较。作者旨在利用信号处理技术对肺音进行特征描述,并通过机器学习开发一个分类系统来区分病理性声音。数据将有助于更好地理解新型诊断技术在小儿肺炎中的益处和局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f451/3274713/7668b56fc5c8/bmjopen-2011-000506fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验