Sanchez J C, Principe J C, Carmena J M, Lebedev Mikhail A, Nicolelis M A L
Department of Biomedical Engineering, Florida University, Gainesville, FL, USA.
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:5321-4. doi: 10.1109/IEMBS.2004.1404486.
Implementation of brain-machine interface neural-to-motor mapping algorithms in low-power, portable digital signal processors (DSPs) requires efficient use of model resources especially when predicting signals that show interdependencies. We show here that a single recurrent neural network can simultaneously predict hand position and velocity from the same ensemble of cells using a minimalist topology. Analysis of the trained topology showed that the model learns to concurrently represent multiple kinematic parameters in a single state variable. We further assess the expressive power of the state variables for both large and small topologies.
在低功耗、便携式数字信号处理器(DSP)中实现脑机接口神经到运动的映射算法,需要高效利用模型资源,尤其是在预测显示相互依赖关系的信号时。我们在此表明,一个单一的递归神经网络可以使用极简拓扑结构,从同一组细胞中同时预测手的位置和速度。对训练后的拓扑结构的分析表明,该模型学会在单个状态变量中同时表示多个运动学参数。我们还进一步评估了大小不同拓扑结构的状态变量的表达能力。