Suppr超能文献

利用一种新的无监督学习算法从皮层中进行优越的手臂运动解码。

Superior arm-movement decoding from cortex with a new, unsupervised-learning algorithm.

出版信息

J Neural Eng. 2018 Apr;15(2):026010. doi: 10.1088/1741-2552/aa9e95.

Abstract

OBJECTIVE

The aim of this work is to improve the state of the art for motor-control with a brain-machine interface (BMI). BMIs use neurological recording devices and decoding algorithms to transform brain activity directly into real-time control of a machine, archetypically a robotic arm or a cursor. The standard procedure treats neural activity-vectors of spike counts in small temporal windows-as noisy observations of the kinematic state (position, velocity, acceleration) of the fingertip. Inferring the state from the observations then takes the form of a dynamical filter, typically some variant on Kalman's (KF). The KF, however, although fairly robust in practice, is optimal only when the relationships between variables are linear and the noise is Gaussian, conditions usually violated in practice.

APPROACH

To overcome these limitations we introduce a new filter, the 'recurrent exponential-family harmonium' (rEFH), that models the spike counts explicitly as Poisson-distributed, and allows for arbitrary nonlinear dynamics and observation models. Furthermore, the model underlying the filter is acquired through unsupervised learning, which allows temporal correlations in spike counts to be explained by latent dynamics that do not necessarily correspond to the kinematic state of the fingertip.

MAIN RESULTS

We test the rEFH on offline reconstruction of the kinematics of reaches in the plane. The rEFH outperforms the standard, as well as three other state-of-the-art, decoders, across three monkeys, two different tasks, most kinematic variables, and a range of bin widths, amounts of training data, and numbers of neurons.

SIGNIFICANCE

Our algorithm establishes a new state of the art for offline decoding of reaches-in particular, for fingertip velocities, the variable used for control in most online decoders.

摘要

目的

本研究旨在通过脑机接口(BMI)改善运动控制领域的现状。BMI 利用神经记录设备和解码算法,将大脑活动直接转化为对机器的实时控制,通常是机械臂或光标。标准程序将神经活动向量(即小时间窗内的尖峰计数)视为指尖运动状态(位置、速度、加速度)的噪声观测值。然后,从观测值推断状态采用动态滤波器的形式,通常是卡尔曼滤波器(KF)的某种变体。然而,KF 在实践中虽然相当稳健,但仅在变量之间的关系为线性且噪声为高斯分布时才是最优的,而这些条件在实际中通常会被违反。

方法

为了克服这些限制,我们引入了一种新的滤波器,即“递归指数族和声”(rEFH),它将尖峰计数明确建模为泊松分布,并允许任意非线性动力学和观测模型。此外,滤波器所基于的模型是通过无监督学习获得的,这允许通过潜在动力学来解释尖峰计数中的时间相关性,而这些潜在动力学不一定对应于指尖的运动状态。

主要结果

我们在平面内的到达运动的运动学离线重建中测试了 rEFH。rEFH 在三个猴子、两个不同任务、大多数运动学变量以及一系列 bin 宽度、训练数据量和神经元数量上,均优于标准解码器和其他三种最先进的解码器。

意义

我们的算法为到达的离线解码建立了新的技术水平,尤其是对于大多数在线解码器用于控制的指尖速度变量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验