Suppr超能文献

基于模型的从电子断层扫描中自动分割动粒微管。

Model-based automated segmentation of kinetochore microtubule from electron tomography.

作者信息

Jiang Ming, Ji Qiang, McEwen Bruce

机构信息

Department of ECSE, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

出版信息

Conf Proc IEEE Eng Med Biol Soc. 2004;2004:1656-9. doi: 10.1109/IEMBS.2004.1403500.

Abstract

The segmentation of kinetochore microtubules from electron tomography is challenging due to the poor quality of the acquired data and the cluttered cellular surroundings. We propose to automate the microtubule segmentation by extending the active shape model (ASM) in two aspects. First, we develop a higher order boundary model obtained by 3-D local surface estimation that characterizes the microtubule boundary better than the gray level appearance model in the 2-D microtubule cross section. We then incorporate this model into the weight matrix of the fitting error measurement to increase the influence of salient features. Second, we integrate the ASM with Kalman filtering to utilize the shape information along the longitudinal direction of the microtubules. The ASM modified in this way is robust against missing data and outliers frequently present in the kinetochore tomography volume. Experimental results demonstrate that our automated method outperforms manual process but using only a fraction of the time of the latter.

摘要

由于所获取数据质量不佳以及细胞环境杂乱,从电子断层扫描中分割动粒微管具有挑战性。我们建议通过在两个方面扩展主动形状模型(ASM)来实现微管分割的自动化。首先,我们开发了一种通过三维局部表面估计获得的高阶边界模型,该模型比二维微管横截面中的灰度外观模型能更好地表征微管边界。然后,我们将此模型纳入拟合误差测量的权重矩阵中,以增加显著特征的影响。其次,我们将ASM与卡尔曼滤波相结合,以利用沿微管纵向的形状信息。以这种方式修改后的ASM对动粒断层扫描体积中经常出现的缺失数据和异常值具有鲁棒性。实验结果表明,我们的自动化方法优于手动过程,且仅使用后者一小部分时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验