Suppr超能文献

基于三级AdaBoost引导的主动形状模型的快速自动3D肝脏分割

Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model.

作者信息

He Baochun, Huang Cheng, Sharp Gregory, Zhou Shoujun, Hu Qingmao, Fang Chihua, Fan Yingfang, Jia Fucang

机构信息

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114.

出版信息

Med Phys. 2016 May;43(5):2421. doi: 10.1118/1.4946817.

Abstract

PURPOSE

A robust, automatic, and rapid method for liver delineation is urgently needed for the diagnosis and treatment of liver disorders. Until now, the high variability in liver shape, local image artifacts, and the presence of tumors have complicated the development of automatic 3D liver segmentation. In this study, an automatic three-level AdaBoost-guided active shape model (ASM) is proposed for the segmentation of the liver based on enhanced computed tomography images in a robust and fast manner, with an emphasis on the detection of tumors.

METHODS

The AdaBoost voxel classifier and AdaBoost profile classifier were used to automatically guide three-level active shape modeling. In the first level of model initialization, fast automatic liver segmentation by an AdaBoost voxel classifier method is proposed. A shape model is then initialized by registration with the resulting rough segmentation. In the second level of active shape model fitting, a prior model based on the two-class AdaBoost profile classifier is proposed to identify the optimal surface. In the third level, a deformable simplex mesh with profile probability and curvature constraint as the external force is used to refine the shape fitting result. In total, three registration methods-3D similarity registration, probability atlas B-spline, and their proposed deformable closest point registration-are used to establish shape correspondence.

RESULTS

The proposed method was evaluated using three public challenge datasets: 3Dircadb1, SLIVER07, and Visceral Anatomy3. The results showed that our approach performs with promising efficiency, with an average of 35 s, and accuracy, with an average Dice similarity coefficient (DSC) of 0.94 ± 0.02, 0.96 ± 0.01, and 0.94 ± 0.02 for the 3Dircadb1, SLIVER07, and Anatomy3 training datasets, respectively. The DSC of the SLIVER07 testing and Anatomy3 unseen testing datasets were 0.964 and 0.933, respectively.

CONCLUSIONS

The proposed automatic approach achieves robust, accurate, and fast liver segmentation for 3D CTce datasets. The AdaBoost voxel classifier can detect liver area quickly without errors and provides sufficient liver shape information for model initialization. The AdaBoost profile classifier achieves sufficient accuracy and greatly decreases segmentation time. These results show that the proposed segmentation method achieves a level of accuracy comparable to that of state-of-the-art automatic methods based on ASM.

摘要

目的

对于肝脏疾病的诊断和治疗,迫切需要一种强大、自动且快速的肝脏轮廓描绘方法。到目前为止,肝脏形状的高度变异性、局部图像伪影以及肿瘤的存在使得自动三维肝脏分割的发展变得复杂。在本研究中,提出了一种基于增强计算机断层扫描图像的自动三级AdaBoost引导主动形状模型(ASM),以稳健且快速的方式对肝脏进行分割,重点在于肿瘤的检测。

方法

使用AdaBoost体素分类器和AdaBoost轮廓分类器自动引导三级主动形状建模。在模型初始化的第一级,提出了一种通过AdaBoost体素分类器方法进行快速自动肝脏分割。然后通过与所得的粗略分割进行配准来初始化形状模型。在主动形状模型拟合的第二级,提出了一种基于两类AdaBoost轮廓分类器的先验模型来识别最佳表面。在第三级,使用具有轮廓概率和曲率约束作为外力的可变形单纯形网格来细化形状拟合结果。总共使用了三种配准方法——三维相似性配准、概率图谱B样条以及所提出的可变形最近点配准——来建立形状对应关系。

结果

使用三个公开挑战数据集3Dircadb1、SLIVER07和内脏解剖3对所提出的方法进行了评估。结果表明,我们的方法在效率方面表现出色,平均用时35秒,在准确性方面,对于3Dircadb1、SLIVER07和解剖3训练数据集,平均骰子相似系数(DSC)分别为0.94±0.02、0.96±0.01和0.94±0.02。SLIVER07测试数据集和解剖3未见过的测试数据集的DSC分别为0.964和0.933。

结论

所提出的自动方法为三维CTce数据集实现了稳健、准确且快速的肝脏分割。AdaBoost体素分类器能够快速无误地检测肝脏区域,并为模型初始化提供足够的肝脏形状信息。AdaBoost轮廓分类器实现了足够的准确性并大大减少了分割时间。这些结果表明,所提出的分割方法达到了与基于ASM的最先进自动方法相当的准确性水平。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验