Suppr超能文献

一种用于磁共振图像偏置场校正的新型快速熵最小化算法。

A novel, fast entropy-minimization algorithm for bias field correction in MR images.

作者信息

Ji Qing, Glass John O, Reddick Wilburn E

机构信息

Division of Translational Imaging Research, Department of Radiological Sciences (MS 210), St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA.

出版信息

Magn Reson Imaging. 2007 Feb;25(2):259-64. doi: 10.1016/j.mri.2006.09.012. Epub 2006 Nov 13.

Abstract

A novel, fast entropy-minimization algorithm for bias field correction in magnetic resonance (MR) images is suggested to correct the intensity inhomogeneity degradation of MR images that has become an increasing problem with the use of phased-array coils. Four important modifications were made to the conventional algorithm: (a) implementation of a modified two-step sampling strategy for stacked 2D image data sets, which included reducing the size of the measured image on each slice with a simple averaging method without changing the number of slices and then using a binary mask generated by a histogram threshold method to define the sampled voxels in the reduced image; (b) improvement of the efficiency of the correction function by using a Legendre polynomial as an orthogonal base function polynomial; (c) use of a nonparametric Parzen window estimator with a Gaussian kernel to calculate the probability density function and Shannon entropy directly from the image data; and (d) performing entropy minimization with a conjugate gradient method. Results showed that this algorithm could correct different types of MR images from different types of coils acquired at different field strengths very efficiently and with decreased computational load.

摘要

提出了一种用于磁共振(MR)图像偏置场校正的新型快速熵最小化算法,以校正MR图像的强度不均匀性退化问题,该问题在使用相控阵线圈时变得越来越严重。对传统算法进行了四项重要改进:(a)对堆叠的二维图像数据集实施改进的两步采样策略,包括用简单平均方法减小每个切片上测量图像的大小而不改变切片数量,然后使用由直方图阈值方法生成的二进制掩码来定义缩小图像中的采样体素;(b)通过使用勒让德多项式作为正交基函数多项式来提高校正函数的效率;(c)使用具有高斯核的非参数帕曾窗估计器直接从图像数据计算概率密度函数和香农熵;(d)用共轭梯度法进行熵最小化。结果表明,该算法能够非常高效地校正从不同场强下不同类型线圈采集的不同类型MR图像,且计算量减少。

相似文献

1
A novel, fast entropy-minimization algorithm for bias field correction in MR images.
Magn Reson Imaging. 2007 Feb;25(2):259-64. doi: 10.1016/j.mri.2006.09.012. Epub 2006 Nov 13.
2
A novel blind separation method in magnetic resonance images.
Comput Math Methods Med. 2014;2014:726712. doi: 10.1155/2014/726712. Epub 2014 Feb 23.
3
The fast automatic algorithm for correction of MR bias field.
J Magn Reson Imaging. 2006 Oct;24(4):891-900. doi: 10.1002/jmri.20695.
4
Interplay between intensity standardization and inhomogeneity correction in MR image processing.
IEEE Trans Med Imaging. 2005 May;24(5):561-76. doi: 10.1109/TMI.2004.843256.
6
Robust generative asymmetric GMM for brain MR image segmentation.
Comput Methods Programs Biomed. 2017 Nov;151:123-138. doi: 10.1016/j.cmpb.2017.08.017. Epub 2017 Aug 24.
7
A Variational Level Set Approach Based on Local Entropy for Image Segmentation and Bias Field Correction.
Comput Math Methods Med. 2017;2017:9174275. doi: 10.1155/2017/9174275. Epub 2017 Nov 27.
8
9
Two novel PET image restoration methods guided by PET-MR kernels: Application to brain imaging.
Med Phys. 2019 May;46(5):2085-2102. doi: 10.1002/mp.13418. Epub 2019 Mar 12.
10
Intensity inhomogeneity correction of multispectral MR images.
Neuroimage. 2006 Aug 1;32(1):54-61. doi: 10.1016/j.neuroimage.2006.03.020. Epub 2006 May 2.

引用本文的文献

5
Evaluation of memory impairment in aging adult survivors of childhood acute lymphoblastic leukemia treated with cranial radiotherapy.
J Natl Cancer Inst. 2013 Jun 19;105(12):899-907. doi: 10.1093/jnci/djt089. Epub 2013 Apr 12.
7
Quantitative morphologic evaluation of magnetic resonance imaging during and after treatment of childhood leukemia.
Neuroradiology. 2007 Nov;49(11):889-904. doi: 10.1007/s00234-007-0262-9. Epub 2007 Jul 26.

本文引用的文献

1
Adaptive segmentation of MRI data.
IEEE Trans Med Imaging. 1996;15(4):429-42. doi: 10.1109/42.511747.
3
Retrospective correction of MR intensity inhomogeneity by information minimization.
IEEE Trans Med Imaging. 2001 Dec;20(12):1398-410. doi: 10.1109/42.974934.
4
Automated model-based bias field correction of MR images of the brain.
IEEE Trans Med Imaging. 1999 Oct;18(10):885-96. doi: 10.1109/42.811268.
5
Adaptive fuzzy segmentation of magnetic resonance images.
IEEE Trans Med Imaging. 1999 Sep;18(9):737-52. doi: 10.1109/42.802752.
6
Design and construction of a realistic digital brain phantom.
IEEE Trans Med Imaging. 1998 Jun;17(3):463-8. doi: 10.1109/42.712135.
7
Optimized homomorphic unsharp masking for MR grayscale inhomogeneity correction.
IEEE Trans Med Imaging. 1998 Apr;17(2):161-71. doi: 10.1109/42.700729.
8
A nonparametric method for automatic correction of intensity nonuniformity in MRI data.
IEEE Trans Med Imaging. 1998 Feb;17(1):87-97. doi: 10.1109/42.668698.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验