Bhat Bheem M, Allen Kristina M, Liu Wei, Graham James, Morales Art, Anisowicz Anthony, Lam Ho-Sun, McCauley Catherine, Coleburn Valerie, Cain Michael, Fortier Eric, Bhat Ramesh A, Bex Frederick J, Yaworsky Paul J
Women's Health and Musculoskeletal Biology, Wyeth Research, 500 Arcola Road, Collegeville, PA 19426, USA.
Gene. 2007 Apr 15;391(1-2):103-12. doi: 10.1016/j.gene.2006.12.014. Epub 2006 Dec 29.
A single point mutation (G to T) in the low-density lipoprotein receptor related protein 5 (LRP5) gene results in a glycine to valine amino acid change (G171V) and is responsible for an autosomal dominant high bone mass trait (HBM) in two independent kindreds. LRP5 acts as a co-receptor to Wnts with Frizzled family members and transduces Wnt-canonical signals which can be antagonized by LRP5 ligand, Dickkopf 1 (Dkk1). In the presence of Wnt1, LRP5 or the HBM variant (LRP5-G171V) induces beta-catenin nuclear translocation and activates T cell factor (TCF)-luciferase reporter activity. HBM variant suppresses Dkk1 function and this results in reduced inhibition of TCF activity as compared to that with LRP5. Structural analysis of LRP5 revealed that the HBM mutation lies in the 4th blade of the first beta-propeller domain. To elucidate the functional significance and consequence of the LRP5-G171V mutation in vitro, we took a structure-based approach to design 15 specific LRP5 point mutations. These included (a) substitutions at the G171 in blade 4, (b) mutations in blades 2-6 of beta-propeller 1, and (c) mutations in beta-propellers 2, 3 and 4. Here we show that substitutions of glycine at 171 to K, F, I and Q also resulted in HBM-like activity in the presence of Wnt1 and Dkk1. This indicates the importance of the G171 site rather than the effect of specific amino acid modification to LRP5 receptor function. Interestingly, G171 equivalent residue mutations in other blades of beta-propeller 1 (A65V, S127V, L200V, A214V and M282V) resulted in LRP5-G171V-like block of Dkk1 function. However G171V type mutations in other beta-propellers of LRP5 did not result in resistance to Dkk1 function. These results indicate the importance of LRP5 beta-propeller 1 for Dkk1 function and Wnt signaling. These data and additional comparative structural analysis of the LRP5 family member LDLR suggest a potential functional role of the first beta-propeller domain through intramolecular interaction with other domains of LRP5 wherein Dkk1 can bind. Such studies may also lead to a better understanding of the mechanisms underlying the reduced function of Dkk1-like inhibitory ligands of LRP5 with HBM-like mutations and its relationship to increased bone density phenotypes.
低密度脂蛋白受体相关蛋白5(LRP5)基因中的一个单点突变(G到T)导致甘氨酸到缬氨酸的氨基酸变化(G171V),并在两个独立的家族中导致常染色体显性高骨量性状(HBM)。LRP5作为Wnts与卷曲蛋白家族成员的共受体,转导Wnt经典信号,该信号可被LRP5配体Dickkopf 1(Dkk1)拮抗。在Wnt1存在的情况下,LRP5或高骨量变异体(LRP5-G171V)诱导β-连环蛋白核转位并激活T细胞因子(TCF)-荧光素酶报告基因活性。高骨量变异体抑制Dkk1功能,与LRP5相比,这导致对TCF活性的抑制作用降低。LRP5的结构分析表明,高骨量突变位于第一个β-螺旋桨结构域的第4个叶片中。为了阐明体外LRP5-G171V突变的功能意义和后果,我们采用基于结构的方法设计了15个特定的LRP5点突变。这些突变包括:(a)第4叶片中G171处的取代;(b)β-螺旋桨1的第2-6叶片中的突变;(c)β-螺旋桨2、3和4中的突变。在此我们表明,在Wnt1和Dkk1存在的情况下,将171位的甘氨酸替换为K、F、I和Q也会导致类似高骨量的活性。这表明G171位点的重要性,而非特定氨基酸修饰对LRP5受体功能的影响。有趣的是,β-螺旋桨1其他叶片中的G171等效残基突变(A65V、S127V、L200V、A214V和M282V)导致类似LRP5-G171V的Dkk1功能阻断。然而,LRP5其他β-螺旋桨中的G171V型突变并未导致对Dkk1功能的抗性。这些结果表明LRP5β-螺旋桨1对Dkk1功能和Wnt信号传导的重要性。这些数据以及LRP5家族成员低密度脂蛋白受体(LDLR)的额外比较结构分析表明,第一个β-螺旋桨结构域通过与LRP5其他可与Dkk1结合的结构域进行分子内相互作用,具有潜在的功能作用。此类研究也可能有助于更好地理解LRP5类似HBM突变的Dkk1样抑制性配体功能降低的机制及其与骨密度增加表型的关系。