Suppr超能文献

疾病特异性基因组分析:识别病理生物学特征

Disease-specific genomic analysis: identifying the signature of pathologic biology.

作者信息

Nicolau Monica, Tibshirani Robert, Børresen-Dale Anne-Lise, Jeffrey Stefanie S

机构信息

Department of Surgery, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.

出版信息

Bioinformatics. 2007 Apr 15;23(8):957-65. doi: 10.1093/bioinformatics/btm033. Epub 2007 Feb 3.

Abstract

MOTIVATION

Genomic high-throughput technology generates massive data, providing opportunities to understand countless facets of the functioning genome. It also raises profound issues in identifying data relevant to the biology being studied.

RESULTS

We introduce a method for the analysis of pathologic biology that unravels the disease characteristics of high dimensional data. The method, disease-specific genomic analysis (DSGA), is intended to precede standard techniques like clustering or class prediction, and enhance their performance and ability to detect disease. DSGA measures the extent to which the disease deviates from a continuous range of normal phenotypes, and isolates the aberrant component of data. In several microarray cancer datasets, we show that DSGA outperforms standard methods. We then use DSGA to highlight a novel subdivision of an important class of genes in breast cancer, the estrogen receptor (ER) cluster. We also identify new markers distinguishing ductal and lobular breast cancers. Although our examples focus on microarrays, DSGA generalizes to any high dimensional genomic/proteomic data.

摘要

动机

基因组高通量技术产生了海量数据,为了解功能基因组的无数方面提供了机会。它在识别与所研究生物学相关的数据方面也引发了深刻的问题。

结果

我们介绍了一种用于病理生物学分析的方法,该方法能够揭示高维数据的疾病特征。这种方法,即疾病特异性基因组分析(DSGA),旨在先于聚类或类别预测等标准技术,并提高它们检测疾病的性能和能力。DSGA测量疾病偏离连续正常表型范围的程度,并分离出数据的异常成分。在几个微阵列癌症数据集中,我们表明DSGA优于标准方法。然后我们使用DSGA突出了乳腺癌中一类重要基因——雌激素受体(ER)簇的一个新的细分。我们还识别出区分导管癌和小叶癌的新标志物。尽管我们的例子侧重于微阵列,但DSGA可推广到任何高维基因组/蛋白质组数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验