Suppr超能文献

从应用于人类乳腺癌的基因表达微阵列研究中鉴定异常染色体区域。

Identification of aberrant chromosomal regions from gene expression microarray studies applied to human breast cancer.

作者信息

Buness Andreas, Kuner Ruprecht, Ruschhaupt Markus, Poustka Annemarie, Sültmann Holger, Tresch Achim

机构信息

German Cancer Research Center (DKFZ), Department of Molecular Genome Analysis, 69120 Heidelberg, Germany.

出版信息

Bioinformatics. 2007 Sep 1;23(17):2273-80. doi: 10.1093/bioinformatics/btm340. Epub 2007 Jun 28.

Abstract

MOTIVATION

In cancer, chromosomal imbalances like amplifications and deletions, or changes in epigenetic mechanisms like DNA methylation influence the transcriptional activity. These alterations are often not limited to a single gene but affect several genes of the genomic region and may be relevant for the disease status. For example, the ERBB2 amplicon (17q21) in breast cancer is associated with poor patient prognosis. We present a general, unsupervised method for genome-wide gene expression data to systematically detect tumor patients with chromosomal regions of distinct transcriptional activity. The method aims to find expression patterns of adjacent genes with a consistently decreased or increased level of gene expression in tumor samples. Such patterns have been found to be associated with chromosomal aberrations and clinical parameters like tumor grading and thus can be useful for risk stratification or therapy.

RESULTS

Our approach was applied to 12 independent human breast cancer microarray studies comprising 1422 tumor samples. We prioritized chromosomal regions and genes predominantly found across all studies. The result highlighted not only regions which are well known to be amplified like 17q21 and 11q13, but also others like 8q24 (distal to MYC) and 17q24-q25 which may harbor novel putative oncogenes. Since our approach can be applied to any microarray study it may become a valuable tool for the exploration of transcriptional changes in diverse disease types.

AVAILABILITY

The R source codes which implement the method and an exemplary analysis are available at http://www.dkfz.de/mga2/people/buness/CTP/.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

在癌症中,诸如扩增和缺失等染色体失衡,或DNA甲基化等表观遗传机制的变化会影响转录活性。这些改变通常不限于单个基因,而是影响基因组区域的多个基因,并且可能与疾病状态相关。例如,乳腺癌中的ERBB2扩增子(17q21)与患者预后不良相关。我们提出了一种通用的、无监督的方法,用于全基因组基因表达数据,以系统地检测具有不同转录活性染色体区域的肿瘤患者。该方法旨在发现肿瘤样本中相邻基因的表达模式,其基因表达水平持续降低或升高。已发现这种模式与染色体畸变以及肿瘤分级等临床参数相关,因此可用于风险分层或治疗。

结果

我们的方法应用于12项独立的人类乳腺癌微阵列研究,包括1422个肿瘤样本。我们对所有研究中主要发现的染色体区域和基因进行了优先级排序。结果不仅突出了众所周知的扩增区域,如17q21和11q13,还突出了其他区域,如8q24(MYC远端)和17q24 - q25,这些区域可能含有新的假定癌基因。由于我们的方法可应用于任何微阵列研究,它可能成为探索不同疾病类型转录变化的有价值工具。

可用性

实现该方法和示例分析的R源代码可在http://www.dkfz.de/mga2/people/buness/CTP/获取。

补充信息

补充数据可在《生物信息学》在线获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验