Suppr超能文献

EMatch:在中等分辨率冷冻电镜图谱中发现蛋白质结构域的高分辨率结构同源物。

EMatch: discovery of high resolution structural homologues of protein domains in intermediate resolution cryo-EM maps.

作者信息

Lasker Keren, Dror Oranit, Shatsky Maxim, Nussinov Ruth, Wolfson Haim J

机构信息

School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Israel.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2007 Jan-Mar;4(1):28-39. doi: 10.1109/TCBB.2007.1003.

Abstract

Cryo-EM has become an increasingly powerful technique for elucidating the structure, dynamics, and function of large flexible macromolecule assemblies that cannot be determined at atomic resolution. However, due to the relatively low resolution of cryo-EM data, a major challenge is to identify components of complexes appearing in cryo-EM maps. Here, we describe EMatch, a novel integrated approach for recognizing structural homologues of protein domains present in a 6-10 A resolution cryo-EM map and constructing a quasi-atomic structural model of their assembly. The method is highly efficient and has been successfully validated on various simulated data. The strength of the method is demonstrated by a domain assembly of an experimental cryo-EM map of native GroEL at 6 A resolution.

摘要

冷冻电镜已成为一种越来越强大的技术,用于阐明无法在原子分辨率下确定的大型柔性大分子组装体的结构、动力学和功能。然而,由于冷冻电镜数据的分辨率相对较低,一个主要挑战是识别冷冻电镜图谱中出现的复合物的组成部分。在这里,我们描述了EMatch,这是一种新颖的综合方法,用于识别6-10埃分辨率冷冻电镜图谱中存在的蛋白质结构域的结构同源物,并构建其组装体的准原子结构模型。该方法效率很高,并已在各种模拟数据上成功验证。通过对6埃分辨率的天然GroEL实验冷冻电镜图谱的结构域组装体证明了该方法的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验