Hirsch Michael, Schölkopf Bernhard, Habeck Michael
Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
J Comput Biol. 2011 Mar;18(3):335-46. doi: 10.1089/cmb.2010.0264.
Cryo-electron microscopy (cryo-EM) plays an increasingly prominent role in structure elucidation of macromolecular assemblies. Advances in experimental instrumentation and computational power have spawned numerous cryo-EM studies of large biomolecular complexes resulting in the reconstruction of three-dimensional density maps at intermediate and low resolution. In this resolution range, identification and interpretation of structural elements and modeling of biomolecular structure with atomic detail becomes problematic. In this article, we present a novel algorithm that enhances the resolution of intermediate- and low-resolution density maps. Our underlying assumption is to model the low-resolution density map as a blurred and possibly noise-corrupted version of an unknown high-resolution map that we seek to recover by deconvolution. By exploiting the nonnegativity of both the high-resolution map and blur kernel, we derive multiplicative updates reminiscent of those used in nonnegative matrix factorization. Our framework allows for easy incorporation of additional prior knowledge such as smoothness and sparseness, on both the sharpened density map and the blur kernel. A probabilistic formulation enables us to derive updates for the hyperparameters; therefore, our approach has no parameter that needs adjustment. We apply the algorithm to simulated three-dimensional electron microscopic data. We show that our method provides better resolved density maps when compared with B-factor sharpening, especially in the presence of noise. Moreover, our method can use additional information provided by homologous structures, which helps to improve the resolution even further.
冷冻电子显微镜(cryo-EM)在大分子组装体的结构解析中发挥着越来越重要的作用。实验仪器和计算能力的进步催生了众多关于大型生物分子复合物的冷冻电镜研究,从而重建了中低分辨率的三维密度图。在这个分辨率范围内,结构元件的识别和解释以及具有原子细节的生物分子结构建模变得困难重重。在本文中,我们提出了一种新算法,可提高中低分辨率密度图的分辨率。我们的基本假设是将低分辨率密度图建模为一个未知高分辨率图的模糊且可能有噪声干扰的版本,我们试图通过去卷积来恢复该高分辨率图。通过利用高分辨率图和模糊核的非负性,我们推导出了类似于非负矩阵分解中使用的乘法更新。我们的框架允许轻松纳入额外的先验知识,例如在锐化后的密度图和模糊核上的平滑性和稀疏性。概率公式使我们能够推导出超参数的更新;因此,我们的方法没有需要调整的参数。我们将该算法应用于模拟的三维电子显微镜数据。我们表明,与B因子锐化相比,我们的方法能提供分辨率更高的密度图,尤其是在存在噪声的情况下。此外,我们的方法可以使用同源结构提供的额外信息,这有助于进一步提高分辨率。