Suppr超能文献

反应-亚扩散系统的动力学方程:推导与稳定性分析。

Kinetic equations for reaction-subdiffusion systems: derivation and stability analysis.

作者信息

Yadav A, Horsthemke Werner

机构信息

Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Dec;74(6 Pt 2):066118. doi: 10.1103/PhysRevE.74.066118. Epub 2006 Dec 28.

Abstract

We derive general kinetic equations for reacting and subdiffusing entities based on a nonlinear continuous time random walk formalism proposed by Vlad and Ross [Phys. Rev. E 66, 061908 (2002)]. Reaction and diffusion processes are separable in a typical reaction-diffusion system, and their combined influence on the evolution of the density of a species is a simple sum. Our derivation shows that this is no longer true for subdiffusive entities undergoing reactions. The strong memory effects in the transport process, i.e., the non-Markovian nature of subdiffusion, results in a nontrivial combination of reactions and spatial dispersal, which we discuss in detail. We carry out a linear stability analysis of the derived reaction-subdiffusion system to understand the effects of memory on pattern formation. We find that the Turing instability persists in the subdiffusive system. However, the memory modifies the Turing threshold and the characteristics of the band of unstable modes close to this threshold.

摘要

基于弗拉德和罗斯提出的非线性连续时间随机游走形式(《物理评论E》66卷,061908页,2002年),我们推导了反应和亚扩散实体的一般动力学方程。在典型的反应扩散系统中,反应和扩散过程是可分离的,它们对物种密度演化的综合影响是简单的相加。我们的推导表明,对于发生反应的亚扩散实体,情况并非如此。传输过程中的强记忆效应,即亚扩散的非马尔可夫性质,导致了反应和空间扩散的非平凡组合,我们将对此进行详细讨论。我们对推导得到的反应 - 亚扩散系统进行了线性稳定性分析,以了解记忆对图案形成的影响。我们发现图灵不稳定性在亚扩散系统中持续存在。然而,记忆改变了图灵阈值以及接近该阈值的不稳定模式带的特征。

相似文献

1
Kinetic equations for reaction-subdiffusion systems: derivation and stability analysis.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Dec;74(6 Pt 2):066118. doi: 10.1103/PhysRevE.74.066118. Epub 2006 Dec 28.
2
Non-Markovian random walks and nonlinear reactions: subdiffusion and propagating fronts.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jan;81(1 Pt 1):011117. doi: 10.1103/PhysRevE.81.011117. Epub 2010 Jan 13.
3
Monte Carlo simulation and linear stability analysis of Turing pattern formation in reaction-subdiffusion systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Nov;78(5 Pt 2):056708. doi: 10.1103/PhysRevE.78.056708. Epub 2008 Nov 24.
4
Transport equations for subdiffusion with nonlinear particle interaction.
J Theor Biol. 2015 Feb 7;366:71-83. doi: 10.1016/j.jtbi.2014.11.012. Epub 2014 Nov 22.
5
Subdiffusion-reaction processes with A→B reactions versus subdiffusion-reaction processes with A+B→B reactions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Sep;90(3):032136. doi: 10.1103/PhysRevE.90.032136. Epub 2014 Sep 25.
6
Turing instability in reaction-subdiffusion systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Aug;78(2 Pt 2):026116. doi: 10.1103/PhysRevE.78.026116. Epub 2008 Aug 21.
7
Generalized fractional diffusion equations for subdiffusion in arbitrarily growing domains.
Phys Rev E. 2017 Oct;96(4-1):042153. doi: 10.1103/PhysRevE.96.042153. Epub 2017 Oct 26.
8
Turing pattern formation in fractional activator-inhibitor systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 2):026101. doi: 10.1103/PhysRevE.72.026101. Epub 2005 Aug 1.
9
Anomalous subdiffusion with multispecies linear reaction dynamics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Feb;77(2 Pt 1):021111. doi: 10.1103/PhysRevE.77.021111. Epub 2008 Feb 11.
10
Reaction-subdiffusion equations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Mar;73(3 Pt 1):031102. doi: 10.1103/PhysRevE.73.031102. Epub 2006 Mar 2.

引用本文的文献

1
MESOSCOPIC MODELING OF STOCHASTIC REACTION-DIFFUSION KINETICS IN THE SUBDIFFUSIVE REGIME.
Multiscale Model Simul. 2016;14(2):668-707. doi: 10.1137/15M1013110. Epub 2016 May 3.
2
Turing pattern dynamics and adaptive discretization for a super-diffusive Lotka-Volterra model.
J Math Biol. 2016 May;72(6):1441-65. doi: 10.1007/s00285-015-0917-9. Epub 2015 Jul 29.
3
Comment on "anomalous versus slowed-down Brownian diffusion in the ligand-binding equilibrium".
Biophys J. 2014 Jun 3;106(11):2541-3. doi: 10.1016/j.bpj.2014.04.035.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验