Suppr超能文献

亚扩散区域中随机反应扩散动力学的介观建模

MESOSCOPIC MODELING OF STOCHASTIC REACTION-DIFFUSION KINETICS IN THE SUBDIFFUSIVE REGIME.

作者信息

Blanc Emilie, Engblom Stefan, Hellander Andreas, Lötstedt Per

机构信息

Division of Scientific Computing, Department of Information Technology, Uppsala University, P. O. Box 337, SE-75105 Uppsala, Sweden.

出版信息

Multiscale Model Simul. 2016;14(2):668-707. doi: 10.1137/15M1013110. Epub 2016 May 3.

Abstract

Subdiffusion has been proposed as an explanation of various kinetic phenomena inside living cells. In order to fascilitate large-scale computational studies of subdiffusive chemical processes, we extend a recently suggested mesoscopic model of subdiffusion into an accurate and consistent reaction-subdiffusion computational framework. Two different possible models of chemical reaction are revealed and some basic dynamic properties are derived. In certain cases those mesoscopic models have a direct interpretation at the macroscopic level as fractional partial differential equations in a bounded time interval. Through analysis and numerical experiments we estimate the macroscopic effects of reactions under subdiffusive mixing. The models display properties observed also in experiments: for a short time interval the behavior of the diffusion and the reaction is ordinary, in an intermediate interval the behavior is anomalous, and at long times the behavior is ordinary again.

摘要

亚扩散已被提出作为解释活细胞内各种动力学现象的一种方式。为了促进对亚扩散化学过程的大规模计算研究,我们将最近提出的一种亚扩散介观模型扩展为一个精确且一致的反应 - 亚扩散计算框架。揭示了两种不同的化学反应可能模型,并推导了一些基本动力学性质。在某些情况下,这些介观模型在宏观层面上可直接解释为有界时间区间内的分数阶偏微分方程。通过分析和数值实验,我们估计了亚扩散混合下反应的宏观效应。这些模型展现出了在实验中也观察到的性质:在短时间间隔内,扩散和反应行为是正常的,在中间间隔内行为是反常的,而在长时间时行为又再次变为正常。

相似文献

1
MESOSCOPIC MODELING OF STOCHASTIC REACTION-DIFFUSION KINETICS IN THE SUBDIFFUSIVE REGIME.
Multiscale Model Simul. 2016;14(2):668-707. doi: 10.1137/15M1013110. Epub 2016 May 3.
3
Fractional-time random walk subdiffusion and anomalous transport with finite mean residence times: faster, not slower.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 1):021113. doi: 10.1103/PhysRevE.86.021113. Epub 2012 Aug 13.
4
Fractional chemotaxis diffusion equations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 May;81(5 Pt 1):051102. doi: 10.1103/PhysRevE.81.051102. Epub 2010 May 4.
5
Subdiffusion-reaction processes with A→B reactions versus subdiffusion-reaction processes with A+B→B reactions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Sep;90(3):032136. doi: 10.1103/PhysRevE.90.032136. Epub 2014 Sep 25.
7
Time Fractional Fisher-KPP and Fitzhugh-Nagumo Equations.
Entropy (Basel). 2020 Sep 16;22(9):1035. doi: 10.3390/e22091035.
8
Non-Markovian random walks and nonlinear reactions: subdiffusion and propagating fronts.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jan;81(1 Pt 1):011117. doi: 10.1103/PhysRevE.81.011117. Epub 2010 Jan 13.
9
Reaction-diffusion and reaction-subdiffusion equations on arbitrarily evolving domains.
Phys Rev E. 2020 Sep;102(3-1):032111. doi: 10.1103/PhysRevE.102.032111.
10
Transport equations for subdiffusion with nonlinear particle interaction.
J Theor Biol. 2015 Feb 7;366:71-83. doi: 10.1016/j.jtbi.2014.11.012. Epub 2014 Nov 22.

引用本文的文献

1
Stochastic self-tuning hybrid algorithm for reaction-diffusion systems.
J Chem Phys. 2019 Dec 28;151(24):244117. doi: 10.1063/1.5125022.
2
Mesoscopic-microscopic spatial stochastic simulation with automatic system partitioning.
J Chem Phys. 2017 Dec 21;147(23):234101. doi: 10.1063/1.5002773.
3
Multiscale Modeling of Diffusion in a Crowded Environment.
Bull Math Biol. 2017 Nov;79(11):2672-2695. doi: 10.1007/s11538-017-0346-6. Epub 2017 Sep 18.
5
Perspective: Stochastic algorithms for chemical kinetics.
J Chem Phys. 2013 May 7;138(17):170901. doi: 10.1063/1.4801941.

本文引用的文献

1
Multi-state modeling of biomolecules.
PLoS Comput Biol. 2014 Sep 25;10(9):e1003844. doi: 10.1371/journal.pcbi.1003844. eCollection 2014 Sep.
2
Comment on "anomalous versus slowed-down Brownian diffusion in the ligand-binding equilibrium".
Biophys J. 2014 Jun 3;106(11):2541-3. doi: 10.1016/j.bpj.2014.04.035.
3
Anomalous versus slowed-down Brownian diffusion in the ligand-binding equilibrium.
Biophys J. 2013 Nov 5;105(9):2064-73. doi: 10.1016/j.bpj.2013.07.023.
4
Spatial stochastic dynamics enable robust cell polarization.
PLoS Comput Biol. 2013;9(7):e1003139. doi: 10.1371/journal.pcbi.1003139. Epub 2013 Jul 25.
5
The role of dimerisation and nuclear transport in the Hes1 gene regulatory network.
Bull Math Biol. 2014 Apr;76(4):766-98. doi: 10.1007/s11538-013-9842-5. Epub 2013 May 18.
6
Anomalous transport in the crowded world of biological cells.
Rep Prog Phys. 2013 Apr;76(4):046602. doi: 10.1088/0034-4885/76/4/046602. Epub 2013 Mar 12.
7
Programming biological models in Python using PySB.
Mol Syst Biol. 2013;9:646. doi: 10.1038/msb.2013.1.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验