Blanc Emilie, Engblom Stefan, Hellander Andreas, Lötstedt Per
Division of Scientific Computing, Department of Information Technology, Uppsala University, P. O. Box 337, SE-75105 Uppsala, Sweden.
Multiscale Model Simul. 2016;14(2):668-707. doi: 10.1137/15M1013110. Epub 2016 May 3.
Subdiffusion has been proposed as an explanation of various kinetic phenomena inside living cells. In order to fascilitate large-scale computational studies of subdiffusive chemical processes, we extend a recently suggested mesoscopic model of subdiffusion into an accurate and consistent reaction-subdiffusion computational framework. Two different possible models of chemical reaction are revealed and some basic dynamic properties are derived. In certain cases those mesoscopic models have a direct interpretation at the macroscopic level as fractional partial differential equations in a bounded time interval. Through analysis and numerical experiments we estimate the macroscopic effects of reactions under subdiffusive mixing. The models display properties observed also in experiments: for a short time interval the behavior of the diffusion and the reaction is ordinary, in an intermediate interval the behavior is anomalous, and at long times the behavior is ordinary again.
亚扩散已被提出作为解释活细胞内各种动力学现象的一种方式。为了促进对亚扩散化学过程的大规模计算研究,我们将最近提出的一种亚扩散介观模型扩展为一个精确且一致的反应 - 亚扩散计算框架。揭示了两种不同的化学反应可能模型,并推导了一些基本动力学性质。在某些情况下,这些介观模型在宏观层面上可直接解释为有界时间区间内的分数阶偏微分方程。通过分析和数值实验,我们估计了亚扩散混合下反应的宏观效应。这些模型展现出了在实验中也观察到的性质:在短时间间隔内,扩散和反应行为是正常的,在中间间隔内行为是反常的,而在长时间时行为又再次变为正常。