Buhrman Harry, Christandl Matthias, Hayden Patrick, Lo Hoi-Kwong, Wehner Stephanie
CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands.
Phys Rev Lett. 2006 Dec 22;97(25):250501. doi: 10.1103/PhysRevLett.97.250501. Epub 2006 Dec 19.
Unconditionally secure nonrelativistic bit commitment is known to be impossible in both the classical and the quantum world. However, when committing to a string of n bits at once, how far can we stretch the quantum limits? In this Letter, we introduce a framework of quantum schemes where Alice commits a string of n bits to Bob, in such a way that she can only cheat on a bits and Bob can learn at most b bits of information before the reveal phase. Our results are twofold: we show by an explicit construction that in the traditional approach, where the reveal and guess probabilities form the security criteria, no good schemes can exist: a + b is at least n. If, however, we use a more liberal criterion of security, the accessible information, we construct schemes where a = 4log2(n) + O(1) and b = 4, which is impossible classically. Our findings significantly extend known no-go results for quantum bit commitment.
已知在经典世界和量子世界中,无条件安全的非相对论性比特承诺都是不可能的。然而,当一次性承诺一串n比特时,我们能在多大程度上突破量子极限呢?在本信函中,我们引入了一个量子方案框架,其中爱丽丝向鲍勃承诺一串n比特,使得她最多只能在a个比特上作弊,并且在揭示阶段之前鲍勃最多只能了解b比特的信息。我们的结果有两个方面:通过显式构造表明,在以揭示概率和猜测概率作为安全标准的传统方法中,不存在好的方案:a + b至少为n。然而,如果我们使用更宽松的安全标准,即可访问信息,我们构造出了a = 4log2(n) + O(1)且b = 4的方案,这在经典情况下是不可能的。我们的发现显著扩展了关于量子比特承诺的已知不可能性结果。