Suppr超能文献

二维伊辛自旋玻璃中的共形不变性与随机洛厄纳演化过程

Conformal invariance and stochastic Loewner evolution processes in two-dimensional Ising spin glasses.

作者信息

Amoruso C, Hartmann A K, Hastings M B, Moore M A

机构信息

School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom.

出版信息

Phys Rev Lett. 2006 Dec 31;97(26):267202. doi: 10.1103/PhysRevLett.97.267202. Epub 2006 Dec 26.

Abstract

We present numerical evidence that the techniques of conformal field theory might be applicable to two-dimensional Ising spin glasses with Gaussian bond distributions. It is shown that certain domain wall distributions in one geometry can be related to that in a second geometry by a conformal transformation. We also present direct evidence that the domain walls are stochastic Loewner (SLE) processes with kappa approximately 2.1. An argument is given that their fractal dimension d(f) is related to their interface energy exponent theta by d(f) - 1 = 3/[4(3 + theta)], which is consistent with the commonly quoted values d(f) approximately 1.27 and theta approximately -0.28.

摘要

我们给出了数值证据,表明共形场论技术可能适用于具有高斯键分布的二维伊辛自旋玻璃。结果表明,一种几何结构中的某些畴壁分布可以通过共形变换与第二种几何结构中的畴壁分布相关联。我们还给出了直接证据,表明畴壁是κ约为2.1的随机洛厄纳(SLE)过程。有人提出,它们的分形维数d(f)与界面能指数θ的关系为d(f) - 1 = 3/[4(3 + θ)],这与通常引用的值d(f)约为1.27和θ约为 -0.28一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验