Suppr超能文献

3D semi-automatic segmentation of the cochlea and inner ear.

作者信息

Xianfen Diao, Siping Chen, Changhong Liang, Yuanmei Wang

机构信息

College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, Zhejiang, China.

出版信息

Conf Proc IEEE Eng Med Biol Soc. 2005;2005:6285-8. doi: 10.1109/IEMBS.2005.1615934.

Abstract

Though interactive direct volume rendering produces meaningful images with high quality, it cannot display separate inner ear labyrinth or cochlea only by adjusting imaging parameters to suppress the surrounding structures. Novel semi-automatic segmentation methods were presented to extract the cochlea and inner ear from spiral CT images. The cochlea was separated from the medical image volume by applying the 3D narrow band level set segmentation algorithm with user interaction introduced to locate the initial contour and adjust the parameters. The inner ear was extracted with a similar semi-automatic segmentation method: manual segmentation was first applied to remove several closely interconnected regions in boundary by viewing image volume slice by slice, then the 3D narrow band level set segmentation algorithm was used to complete fine segmentation on image volume. Generating 3D models of cochlea and inner ear structures with such methods not only takes advantage of the combination of 2D images with 3D volume but also saves much time of post-processing. The segmented results were rendered with the Marching Cubes surface rendering method. The correlation of the point on the resultant surface to the three orthogonal sections that intersect at that point on the surface was built to evaluate the segmented object and display the spatial relations of the anatomical structures. The performance of the presented semi-automatic segmentation methods is tested using spiral CT images of the temporal bone.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验