Suppr超能文献

面向图像引导颞骨手术的自动术前流水线。

Toward an automatic preoperative pipeline for image-guided temporal bone surgery.

机构信息

Department of Computer Science, Technische Universität Darmstadt, Darmstadt, Germany.

Department of Oto-Rhino-Laryngology, Düsseldorf University Hospital, Düsseldorf, Germany.

出版信息

Int J Comput Assist Radiol Surg. 2019 Jun;14(6):967-976. doi: 10.1007/s11548-019-01937-x. Epub 2019 Mar 19.

Abstract

PURPOSE

Minimally invasive surgery is often built upon a time-consuming preoperative step consisting of segmentation and trajectory planning. At the temporal bone, a complete automation of these two tasks might lead to faster interventions and more reproducible results, benefiting clinical workflow and patient health.

METHODS

We propose an automatic segmentation and trajectory planning pipeline for image-guided interventions at the temporal bone. For segmentation, we use a shape regularized deep learning approach that is capable of automatically detecting even the cluttered tiny structures specific for this anatomy. We then perform trajectory planning for both linear and nonlinear interventions on these automatically segmented risk structures.

RESULTS

We evaluate the usability of segmentation algorithms for planning access canals to the cochlea and the internal auditory canal on 24 CT data sets of real patients. Our new approach achieves similar results to the existing semiautomatic method in terms of Dice but provides more accurate organ shapes for the subsequent trajectory planning step. The source code of the algorithms is publicly available.

CONCLUSION

Automatic segmentation and trajectory planning for various clinical procedures at the temporal bone are feasible. The proposed automatic pipeline leads to an efficient and unbiased workflow for preoperative planning.

摘要

目的

微创手术通常建立在耗时的术前步骤上,包括分割和轨迹规划。在颞骨中,这两个任务的完全自动化可能会导致更快的干预和更可重复的结果,从而使临床工作流程和患者健康受益。

方法

我们提出了一种用于颞骨图像引导介入的自动分割和轨迹规划管道。对于分割,我们使用形状正则化的深度学习方法,能够自动检测到甚至是针对这种解剖结构的杂乱微小结构。然后,我们在这些自动分割的风险结构上为线性和非线性介入执行轨迹规划。

结果

我们评估了分割算法在规划通向耳蜗和内听道的通道方面的可用性,涉及 24 个真实患者的 CT 数据集。我们的新方法在骰子方面与现有的半自动方法具有相似的结果,但为后续的轨迹规划步骤提供了更准确的器官形状。算法的源代码是公开的。

结论

在颞骨上进行各种临床手术的自动分割和轨迹规划是可行的。所提出的自动流水线为术前规划提供了高效、无偏的工作流程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验