Suppr超能文献

单通道模仿自然阅读诱发电位的单次试验估计

Single-trial estimation of imitating-natural-reading evoked potentials in single-channel.

作者信息

Guan Jin-An, Chen Yaguang, Lin Jiarui

机构信息

School of Life Science, Huazhong University of Science and Technology, Wuhan, 430074 China; School of Electronic Engineering, South-Central University for Nationalities, Wuhan, 430074, China.

出版信息

Conf Proc IEEE Eng Med Biol Soc. 2005;2005:2052-5. doi: 10.1109/IEMBS.2005.1616861.

Abstract

Using Imitating-Natural-Reading Induced Potentials as communication carriers, we are constructing a Brain-computer interface based mental speller which enable users to interaction with computers. The potentials were induced in this way: In a trial, strings consisted of target and non-target symbols were moving smoothly from right to left through a little visual window at the center of computer screen. Subject was instructed to stare at the visual window to count the target, and thus potentials were evoked. In practical applications, fewer electroencephalograph recording channels are preferred. We explored the single-trial estimating of event-related potentials recorded in single-channel using support vector machines in three subjects. With carefully feature selections, we obtained satisfying results of correct classification rate, which is 92.1%, 94.1% and 91.5%, respectively. The results demonstrated the advantages of the inducing paradigm used in our experiments.

摘要

我们正在构建一种基于脑机接口的心理拼写器,它以模仿自然阅读诱发电位作为通信载体,使用户能够与计算机进行交互。诱发电位的产生方式如下:在一次试验中,由目标符号和非目标符号组成的字符串从右向左平稳地移动通过计算机屏幕中央的一个小视觉窗口。受试者被要求盯着视觉窗口数目标符号,从而诱发电位。在实际应用中,较少的脑电图记录通道是优选的。我们使用支持向量机对三名受试者单通道记录的事件相关电位进行了单次试验估计。通过仔细的特征选择,我们获得了令人满意的正确分类率结果,分别为92.1%、94.1%和91.5%。结果证明了我们实验中使用的诱发范式的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验