School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
J Med Syst. 2011 Oct;35(5):1323-31. doi: 10.1007/s10916-011-9696-z. Epub 2011 Jun 18.
This paper investigates the challenging issue of enabling fast brain-computer interaction to construct a mental speller. Exploiting visual evoked potentials as communication carriers, an online paradigm called "imitating-human-natural-reading" is realized. In this online paradigm, single-trial estimation with the intrinsically real-time feature should be used instead of grand average that is traditionally used in the cognitive or clinical experiments. By the use of several montages of component features from four channels with parameter optimization, we explored the support vector machines-based single-trial estimation of evoked potentials. The results on a human-subject show the advantages of the inducing paradigm used in our mental speller with a high classification rate.
本文研究了实现快速脑机交互以构建心理拼写器的难题。利用视觉诱发电位作为通信载体,实现了一种称为“模仿人类自然阅读”的在线范例。在这种在线范例中,应该使用具有内在实时特性的单次试验估计,而不是传统认知或临床实验中使用的大平均值。通过使用四个通道的组件特征的几种组合,并进行参数优化,我们探索了基于支持向量机的诱发电位单次试验估计。在人体受试者上的结果表明,我们的心理拼写器中使用的诱导范例具有高分类率的优势。