Suppr超能文献

用于人体区域传感器网络和移动医疗系统的基于生理信号的实体认证。

Physiological signal based entity authentication for body area sensor networks and mobile healthcare systems.

作者信息

Bao Shu-Di, Zhang Yuan-Ting, Shen Lian-Feng

机构信息

National Mobile Communications Research Laboratory, Southeast University, Nanjing, China; Joint Research Center for Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.

出版信息

Conf Proc IEEE Eng Med Biol Soc. 2005;2005:2455-8. doi: 10.1109/IEMBS.2005.1616965.

Abstract

With the evolution of m-Health, an increasing number of biomedical sensors will be worn on or implanted in an individual in the future for the monitoring, diagnosis, and treatment of diseases. For the optimization of resources, it is therefore necessary to investigate how to interconnect these sensors in a wireless body area network, wherein security of private data transmission is always a major concern. This paper proposes a novel solution to tackle the problem of entity authentication in body area sensor network (BASN) for m-Health. Physiological signals detected by biomedical sensors have dual functions: (1) for a specific medical application, and (2) for sensors in the same BASN to recognize each other by biometrics. A feasibility study of proposed entity authentication scheme was carried out on 12 healthy individuals, each with 2 channels of photoplethysmogram (PPG) captured simultaneously at different parts of the body. The beat-to-beat heartbeat interval is used as a biometric characteristic to generate identity of the individual. The results of statistical analysis suggest that it is a possible biometric feature for the entity authentication of BASN.

摘要

随着移动健康的发展,未来会有越来越多的生物医学传感器佩戴在个人身上或植入体内,用于疾病的监测、诊断和治疗。因此,为了优化资源,有必要研究如何在无线体域网中互连这些传感器,其中私人数据传输的安全性始终是主要关注点。本文提出了一种新颖的解决方案,以解决移动健康中体域传感器网络(BASN)的实体认证问题。生物医学传感器检测到的生理信号具有双重功能:(1)用于特定的医疗应用,(2)供同一BASN中的传感器通过生物特征识别彼此。对12名健康个体进行了所提出的实体认证方案的可行性研究,每个个体在身体不同部位同时采集2通道光电容积脉搏波描记图(PPG)。逐搏心跳间隔用作生物特征来生成个体身份。统计分析结果表明,它是BASN实体认证的一种可能的生物特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验