Jiang M, Wang R, Wang J, Jin D
Division of Intelligent and Biomechanical System, State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
Conf Proc IEEE Eng Med Biol Soc. 2005;2005:2672-4. doi: 10.1109/IEMBS.2005.1617020.
In this paper, an identification method of finger motions using the wavelet transform of multi-channel electromyography (EMG) signal is presented. The first step of this method is to analyze surface EMG signal detected from the subject's upper arm using the multi-resolution of wavelet transform, and extract features using the variance, maximum and mean absolute value of the wavelet coefficients. In this way, a new feature space is established by wavelet coefficients. The second step is to import the feature values into an Artificial Neural Network (ANN) to identify the finger motion. Based on the results of experiments, it is concluded that this method is effective in identification of finger motion. Thus, it provides an alternative approach to use the surface EMG in controlling the finger motion of a multi-fingered prosthetic hand.
本文提出了一种利用多通道肌电(EMG)信号的小波变换来识别手指运动的方法。该方法的第一步是使用小波变换的多分辨率分析从受试者上臂检测到的表面肌电信号,并利用小波系数的方差、最大值和平均绝对值来提取特征。通过这种方式,由小波系数建立了一个新的特征空间。第二步是将特征值输入人工神经网络(ANN)以识别手指运动。基于实验结果,得出该方法在识别手指运动方面是有效的结论。因此,它为利用表面肌电控制多指假肢的手指运动提供了一种替代方法。